Conflict-free coloring with respect to a subset of intervals

Panagiotis Cheilaris

Faculty of Informatics
Università della Svizzera italiana (USI Lugano)
joint work with Shakhar Smorodinsky

Hypergraphs and colorings

Def. A hypergraph is a pair (V, \mathcal{E}), where \mathcal{E} is a family of subsets of V. An element $e \in \mathcal{E}$ is called a hyperedge.

Def. A (vertex) coloring with k colors is a function $C: V \rightarrow\{1, \ldots, k\}$.

Conflict-free coloring and chromatic number

Def. A conflict-free (CF) coloring of $H=(V, \mathcal{E})$ is a coloring of H such that for every hyperedge $e \in \mathcal{E}$, there is a color in e which occurs exactly once in e.

Conflict-free coloring and chromatic number

Def. A conflict-free (CF) coloring of $H=(V, \mathcal{E})$ is a coloring of H such that for every hyperedge $e \in \mathcal{E}$, there is a color in e which occurs exactly once in e.

Conflict-free coloring and chromatic number

Def. A conflict-free (CF) coloring of $H=(V, \mathcal{E})$ is a coloring of H such that for every hyperedge $e \in \mathcal{E}$, there is a color in e which occurs exactly once in e.

Def. The minimum k such that H has a CF-coloring with k colors is called the CF-chromatic number of H, denoted by $\chi_{\mathrm{cf}}(H)$.

Conflict-free coloring geometric hypergraphs

(Even, Lotker, Ron, Smorodinsky, 2003)
Given a set P of n points on the plane and a family \mathcal{F} of geometric shapes, define a hypergraph $H=(V, \mathcal{E})$ as follows:

- the vertex set consists of the n points $(V=P)$,
- a subset $S \subseteq P$ is in \mathcal{E} iff $S=P \cap Q$, for some shape $Q \in \mathcal{F}$.

(application: frequency assignment in cellular networks)

Motivation for conflict-free coloring

- Cellular networks consist of fixed position base stations (or antennas) that emit at a specific frequency, and moving agents.
- Each moving agent has a range of communication that can be modeled by a shape (like a disk). The range includes a subset S of the base stations. We want each such S to contain a base station with unique frequency in S.
- Model: base stations \rightarrow points, frequencies \rightarrow colors
- The frequency spectrum is expensive. Therefore, we try to minimize frequency use, i.e., reuse frequencies as much as possible.

PANAGIOTIS CHEILARIS - CONFLICT-FREE COLORING WITH RESPECT TO A SUBSET OF INTERVALS

PANAGIOTIS CHEILARIS - CONFLICT-FREE COLORING WITH RESPECT TO A SUBSET OF INTERVALS

CF coloring collinear points w.r.t. disks

Special case: conflict-free coloring with respect to disks, when all n points to be colored are collinear.
disks intersect with sets of consecutive points on the line.
equivalently, we have a hypergraph of n points on the real line with respect to all intervals.

We call this the discrete interval hypergraph H_{n}. $H_{n}=(\{1, \ldots, n\},\{[i, j] \cap \mathbb{N} \mid 1 \leq i \leq j \leq n\})$

CF coloring of the discrete interval hypergraph H_{n}

Example for $H_{5}(n=5)$:

CF coloring of the discrete interval hypergraph H_{n}

 Example for $H_{5}(n=5)$:CF coloring:
1
2
3
1
2

CF coloring of the discrete interval hypergraph H_{n}

 Example for $H_{5}(n=5)$:

CF coloring of the discrete interval hypergraph H_{n}

 Example for $H_{5}(n=5)$:\qquad
\square

CF coloring:
1
2
3
1
2
illegal coloring:

3

Conflict-free coloring w.r.t. a subset of intervals

Katz, Lev-Tov, Morgenstern in CCCG 2007 considered conflict-free coloring points with respect to a subset of all possible intervals.

Katz et al. claim a 4-approximation algorithm.

Our main result: a 2-approximation algorithm

Thm. There is a 2-approximation algorithm for conflict-free coloring with respect to a subset of intervals.

Moreover, we prove that there are tight instances, which are colored with twice the optimal number of colors by our algorithm.

Our main result: a 2-approximation algorithm

Thm. There is a 2-approximation algorithm for conflict-free coloring with respect to a subset of intervals.

Moreover, we prove that there are tight instances, which are colored with twice the optimal number of colors by our algorithm.

Our main result: a 2-approximation algorithm

Thm. There is a 2-approximation algorithm for conflict-free coloring with respect to a subset of intervals.

Moreover, we prove that there are tight instances, which are colored with twice the optimal number of colors by our algorithm.

A hitting-set algorithm for conflict-free coloring

$\ell \leftarrow 0 ; V^{0} \leftarrow V ; \mathcal{E}^{0} \leftarrow \mathcal{E}$
while $\mathcal{E}^{\ell} \neq \emptyset$ do
$S^{\ell} \leftarrow$ a minimal hitting set for $\left(V^{\ell}, \mathcal{E}^{\ell}\right)$ color every $v \in V^{\ell} \backslash S^{\ell}$ with color ℓ
$V^{\ell+1} \leftarrow S^{\ell}$
$\mathcal{E}^{\ell+1} \leftarrow\left\{e \cap S^{\ell} \mid e \in \mathcal{E}^{\ell}\right.$ and $\left.\left|e \cap S^{\ell}\right|>1\right\}$
$\ell \leftarrow \ell+1$
end while
if $V^{\ell} \neq \emptyset$ then color every $v \in V^{\ell}$ with color ℓ end if

Our other result: complexity

Def. decision problem CFSubsetintervals:
"Given a subhypergraph $H=(\{1, \ldots, n\}, I)$ of the discrete interval hypergraph H_{n} and a natural number k, is it true that $\chi_{\text {cf }}(H) \leq k$?"
non-trivial only when $k<\left\lfloor\log _{2} n\right\rfloor+1$;
if $k \geq\left\lfloor\log _{2} n\right\rfloor+1$, answer is always yes, since
$\chi_{\mathrm{cf}}\left(H_{n}\right)=\left\lfloor\log _{2} n\right\rfloor+1$.

Our other result: complexity

Def. decision problem CFSubsetIntervals:
"Given a subhypergraph $H=(\{1, \ldots, n\}, I)$ of the discrete interval hypergraph H_{n} and a natural number k, is it true that $\chi_{\text {cf }}(H) \leq k$?"
non-trivial only when $k<\left\lfloor\log _{2} n\right\rfloor+1$;
if $k \geq\left\lfloor\log _{2} n\right\rfloor+1$, answer is always yes, since
$\chi_{\mathrm{cf}}\left(H_{n}\right)=\left\lfloor\log _{2} n\right\rfloor+1$.

Thm. CFSubsetIntervals has a quasipolynomial time deterministic algorithm.
(quasipolynomial means $2^{O\left(\log ^{2} n\right)}$ in this case)

A non-deterministic $O\left(\log ^{2} n\right)$-space algorithm

Scan points from 1 to n.
For each point $t \in\{1, \ldots, n\}$, try non-deterministically every color in $\{0, \ldots, k\}$ and check if all intervals ending at t have the CF-property.

For every color $c \in\{0, \ldots, k\}$, keep track of: (a) the closest point to t colored with c in variable p_{c}
(b) the second closest point to t colored with c in variable s_{c}.
color c is occurring exactly one time in $[j, t] \in I$ if and only if $s_{c}<j \leq p_{c}$.

```
for \(c \leftarrow 0\) to \(k\) do
    \(s_{c} \leftarrow 0\)
    \(p_{c} \leftarrow 0\)
end for
for \(t \leftarrow 1\) to \(n\) do
    choose \(c\) non-deterministically from \(\{0, \ldots, k\}\)
    \(s_{c} \leftarrow p_{c}\)
    \(p_{c} \leftarrow t\)
    for \(j \in\{j \mid[j, t] \in I\}\) do
        IntervalConflict \(\leftarrow\) True
        for \(c \leftarrow 1\) to \(k\) do
            if \(s_{c}<j \leq p_{c}\) then
            IntervalConflict \(\leftarrow\) False
            end if
        end for
        if IntervalConflict then
            return NO
        end if
    end for
end for
return YES
```


Related work and open problems

PTAS? Polynomial time algorithm?
relationship of unique-maximum and conflict-free colorings w.r.t. a subset of intervals (see also joint work with Géza Tóth, Balázs Keszegh and Dömötör Pálvölgyi, for UM/CF relationship in other hypergraphs)
strong conflict-free coloring (Luisa Gargano and Adele Rescigno)
common paper with the above authors in ISAAC 2012

Thank you!

