Conflict-free coloring with respect to a subset of intervals

Panagiotis Cheilaris

Faculty of Informatics Università della Svizzera italiana (USI Lugano)

joint work with Shakhar Smorodinsky

Hypergraphs and colorings

Def. A *hypergraph* is a pair (V, \mathcal{E}), where \mathcal{E} is a family of subsets of V. An element $e \in \mathcal{E}$ is called a *hyperedge*.

Def. A (vertex) coloring with *k* colors is a function $C: V \to \{1, \dots, k\}.$ $(1 \quad 1 \quad 1 \\ 2 \quad 3)$

Conflict-free coloring and chromatic number

Def. A *conflict-free* (CF) coloring of $H = (V, \mathcal{E})$ is a coloring of H such that for every hyperedge $e \in \mathcal{E}$, there is a color in e which occurs exactly once in e.

Conflict-free coloring and chromatic number

Def. A *conflict-free* (CF) coloring of $H = (V, \mathcal{E})$ is a coloring of H such that for every hyperedge $e \in \mathcal{E}$, there is a color in e which occurs exactly once in e.

Conflict-free coloring and chromatic number

Def. A *conflict-free* (CF) coloring of $H = (V, \mathcal{E})$ is a coloring of H such that for every hyperedge $e \in \mathcal{E}$, there is a color in e which occurs exactly once in e.

Def. The minimum *k* such that *H* has a CF-coloring with *k* colors is called the CF-*chromatic number* of *H*, denoted by $\chi_{cf}(H)$.

Conflict-free coloring geometric hypergraphs

(Even, Lotker, Ron, Smorodinsky, 2003) Given a set *P* of *n* points on the plane and a family \mathcal{F} of geometric shapes, define a hypergraph $H = (V, \mathcal{E})$ as follows:

- ▶ the vertex set consists of the *n* points (*V* = *P*),
- a subset $S \subseteq P$ is in \mathcal{E} iff $S = P \cap Q$, for some shape $Q \in \mathcal{F}$.

(application: frequency assignment in cellular networks)

Motivation for conflict-free coloring

- Cellular networks consist of fixed position *base stations* (or antennas) that emit at a specific frequency, and *moving agents*.
- Each moving agent has a range of communication that can be modeled by a shape (like a disk). The range includes a subset *S* of the base stations. We want each such *S* to contain a base station with unique frequency in *S*.
- Model: base stations \rightarrow points, frequencies \rightarrow colors
- The frequency spectrum is expensive. Therefore, we try to minimize frequency use, i.e., reuse frequencies as much as possible.

• ٠ • . . .

• ٠ • . . .

CF coloring collinear points w.r.t. disks

Special case: conflict-free coloring with respect to disks, when all *n* points to be colored are collinear.

disks intersect with sets of consecutive points on the line.

equivalently, we have a hypergraph of *n* points on the real line with respect to all intervals.

We call this the *discrete interval hypergraph* H_n . $H_n = (\{1, ..., n\}, \{[i, j] \cap \mathbb{N} \mid 1 \le i \le j \le n\})$

Conflict-free coloring w.r.t. a **subset** of intervals

Katz, Lev-Tov, Morgenstern in CCCG 2007 considered conflict-free coloring points with respect to a *subset* of all possible intervals.

• • • • • • •

Katz et al. claim a 4-approximation algorithm.

Our main result: a 2-approximation algorithm

Thm. There is a 2-approximation algorithm for conflict-free coloring with respect to a subset of intervals.

Moreover, we prove that there are tight instances, which are colored with twice the optimal number of colors by our algorithm.

Our main result: a 2-approximation algorithm

Thm. There is a 2-approximation algorithm for conflict-free coloring with respect to a subset of intervals.

Moreover, we prove that there are tight instances, which are colored with twice the optimal number of colors by our algorithm.

Our main result: a 2-approximation algorithm

Thm. There is a 2-approximation algorithm for conflict-free coloring with respect to a subset of intervals.

Moreover, we prove that there are tight instances, which are colored with twice the optimal number of colors by our algorithm. A hitting-set algorithm for conflict-free coloring

$$\ell \leftarrow 0; V^{0} \leftarrow V; \mathcal{E}^{0} \leftarrow \mathcal{E}$$

while $\mathcal{E}^{\ell} \neq \emptyset$ do
 $S^{\ell} \leftarrow a$ minimal hitting set for $(V^{\ell}, \mathcal{E}^{\ell})$
color every $v \in V^{\ell} \setminus S^{\ell}$ with color ℓ
 $V^{\ell+1} \leftarrow S^{\ell}$
 $\mathcal{E}^{\ell+1} \leftarrow \{e \cap S^{\ell} \mid e \in \mathcal{E}^{\ell} \text{ and } |e \cap S^{\ell}| > 1\}$
 $\ell \leftarrow \ell + 1$
and while

end while

if $V^{\ell} \neq \emptyset$ then color every $v \in V^{\ell}$ with color ℓ end if

Our other result: complexity

Def. decision problem CFSubsetIntervals:

"Given a subhypergraph $H = (\{1, ..., n\}, I)$ of the discrete interval hypergraph H_n and a natural number k, is it true that $\chi_{cf}(H) \leq k$?"

non-trivial only when $k < \lfloor \log_2 n \rfloor + 1$; if $k \ge \lfloor \log_2 n \rfloor + 1$, answer is always yes, since $\chi_{cf}(H_n) = \lfloor \log_2 n \rfloor + 1$.

Our other result: complexity

Def. decision problem CFSubsetIntervals:

"Given a subhypergraph $H = (\{1, ..., n\}, I)$ of the discrete interval hypergraph H_n and a natural number k, is it true that $\chi_{cf}(H) \leq k$?"

non-trivial only when $k < \lfloor \log_2 n \rfloor + 1$; if $k \ge \lfloor \log_2 n \rfloor + 1$, answer is always yes, since $\chi_{cf}(H_n) = \lfloor \log_2 n \rfloor + 1$.

Thm. CFSUBSETINTERVALS has a *quasipolynomial* time deterministic algorithm.

(quasipolynomial means $2^{O(\log^2 n)}$ in this case)

A non-deterministic $O(\log^2 n)$ -space algorithm

Scan points from 1 to *n*.

For each point $t \in \{1, ..., n\}$, try non-deterministically every color in $\{0, ..., k\}$ and check if all intervals ending at t have the CF-property.

For every color $c \in \{0, ..., k\}$, keep track of: (a) the closest point to *t* colored with *c* in variable p_c (b) the second closest point to *t* colored with *c* in variable s_c .

color *c* is occurring exactly one time in $[j, t] \in I$ if and only if $s_c < j \le p_c$.

```
for c \leftarrow 0 to k do
   s_c \leftarrow 0
   p_c \leftarrow 0
end for
for t \leftarrow 1 to n do
   choose c non-deterministically from \{0, \ldots, k\}
   s_c \leftarrow p_c
   p_c \leftarrow t
   for j \in \{j \mid [j, t] \in I\} do
       IntervalConflict \leftarrow True
       for c \leftarrow 1 to k do
           if s_c < j \le p_c then
               IntervalConflict ← False
           end if
       end for
       if IntervalConflict then
           return NO
       end if
   end for
end for
return YES
```

Related work and open problems

PTAS? Polynomial time algorithm?

relationship of unique-maximum and conflict-free colorings w.r.t. a subset of intervals (see also joint work with Géza Tóth, Balázs Keszegh and Dömötör Pálvölgyi, for UM/CF relationship in other hypergraphs)

strong conflict-free coloring (Luisa Gargano and Adele Rescigno)

common paper with the above authors in ISAAC 2012

Thank you!

PANAGIOTIS CHEILARIS - CONFLICT-FREE COLORING WITH RESPECT TO A SUBSET OF INTERVALS