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INTRODUCTION

2 / 61



Motivation

Many natural and artificial networks
are inherently dynamic

e.g. animal, social, transportation,
mobile (e.g. robot, sensor), wireless
networks ...

Mobile Internet

Almost 50% UK internet users
are going online via mobile phone
data connections, according to
the UK Office for National
Statistics.

Figures: Internet and Global Airline
Networks

3 / 61



Existing Work

Population Protocols: strong global fairness, limited memory, stabilization
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Existing Work

Fault tolerance: dynamicity eventually ceases, restricted number, frequency,
duration of network changes

Dynamic Overlay Networks: nodes choose an overlay communication network
themselves (e.g. by gossip), churn is typical

Geometric and Random Mobility: unit disk graph model, birth-death edge
processes, topology changes according to particular probability distributions
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The Worst-case Perspective

The network may change arbitrarily from time to time

Adversary scheduler: controls the topology

Nodes do not control the topology

Necessary restriction: information must eventually spread

Advantage: results hold for all possible dynamicity/mobility patterns and not
just specific cases or distributions
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THE MODEL
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Dynamic Graph Model

a.k.a. temporal or time-varying

Each edge has a set of time-labels indicating availability times

Definition (Dynamic Graph)

A dynamic graph G is a pair (V ,E ), where V is a set of n nodes and
E : N≥1 → P({{u, v} : u, v ∈ V }) is a function mapping a round number r to a
set E (r) of bidirectional links.

An interesting result:

There is no analogue of Menger’s theorem for arbitrary temporal networks
[KKK00]
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Menger’s Theorem Violated
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Menger’s Theorem: The max number of node-disjoint s-t paths is equal to
the min number of nodes needed to separate s from t
We now care for temporal paths (strictly increasing time-labels, a.k.a.
journeys)
There are no 2 disjoint temporal paths from u1 to u4 but
After deleting any node (other than u1 or u4) there still remains a
temporal u1-u4 path 9 / 61



Further Modeling Assumptions

Set V of n nodes/processors

Unlimited local storage

Usually unique ids of size O(log n) bits

Synchronous message passing

Discrete steps/rounds
Global clock available to the nodes
Communication via sending/receiving messages

2 types of message transmission
1 Broadcast
2 One-to-each
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A Round

1 The adversary chooses the edges for the round

It can see the internal states of the nodes at the beginning of the round

2 At the same time and independently of the adversary’s choice of edges each
node generates its message(s) for the current round

No info about the internal state of neighbors when generating messages
Deterministic algorithms generate messages based solely on the internal state:
the adversary can infer the messages

3 Messages are delivered to the sender’s neighbors, as chosen by the adversary

4 The next round begins
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TOOLS & METRICS
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Causal Influence [Lam78]

Crucial notion

(u, r): the state of node u at time/round r

(u, r)→ (v , r + 1) iff u = v or {u, v} ∈ E (r + 1)

Causal order  ⊆ (V × N≥0)2: the reflexive and transitive closure of →
(u, r) (v , r ′): node u’s state in round r influences node v ’s state in round
r ′

u “influences” v through a chain of messages originating at u and ending at v
(possibly going through other nodes in between)
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2 Useful Sets

1 Past set of a time-node (u, t ′) from time t

past(u,t′)(t) := {v ∈ V : (v , t) (u, t′)}
set of nodes whose t-state has causally influenced the t′-state of u

2 Future set of a time-node (u, t) at time t ′

future(u,t)(t′) := {v ∈ V : (u, t) (v , t′)}
set of nodes whose t′-state has been causally influenced by the t-state of u
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Dynamic Diameter

Classical diameter is not suitable for dynamic networks

A star graph can be made to have dynamic diameter n − 1 while its diameter
is just 2 [AKL08]

Dynamic diameter

Upper bound on flooding time (time required for each node to causally
influence every other node)

Minimum D ∈ N s.t. for all times t ≥ 0 and all u, v ∈ V it holds that
(u, t) (v , t + D)

Small dynamic diameter allows for fast dissemination of information

Nodes do not know the dynamic diameter

We shall allow minimal knowledge based on which nodes may infer upper
bounds on the dynamic diameter
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Dynamic Diameter
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Dynamic Diameter

Diameter = 2

while on the other hand . . .

Dynamic diameter = 8 (i.e. n − 1)

Node 8 first “hears of” node 0 in round 8
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T -interval Connected Dynamic Graphs [KLO10]

Represent dynamic networks that are connected at every instant

T represents the rate of connectivity changes

Definition

A dynamic graph G = (V ,E ) is said to be T -interval connected, for T ≥ 1, if, for

all r ∈ N, the static graph Gr ,T := (V ,
⋂r+T−1

i=r E (r)) is connected.

For example

In 1-interval connected the underlying connected spanning subgraph may
change arbitrarily from round to round

In ∞-interval connected a connected spanning subgraph is preserved forever
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T -interval Connected Dynamic Graphs

Allow for constant propagation of information

There is always an edge in every cut

u

Nodes that have
heard of u

Nodes that have
not heard of u
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T -interval Connected Dynamic Graphs

Lemma ([KLO10])

For any node u ∈ V and time r ≥ 0 we have

1 |{v ∈ V : (u, 0) (v , r)}| ≥ min{r + 1, n},
2 |{v ∈ V : (v , 0) (u, r)}| ≥ min{r + 1, n}.

The dynamic diameter is small

At most linear in n

For all times t ≥ 0 the t-state of any node influences the (t + n − 1)-state of
every other node
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Instantaneous Connectivity: State-of-the-art

The idea first appears in [OW05] in an asynchronous setting

They studied flooding and routing

Flooding was solved in O(Tn2) rounds using O(log n) bit storage and
message overhead

T is the maximum time it takes to transmit a message

Routing was solved in O(Tn) rounds using O(log n) bit storage and message
overhead
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Instantaneous Connectivity: State-of-the-art

T -interval connectivity was proposed in [KLO10]

The synchronous case was studied for the first time

Counting and all-to-all token dissemination were solved in
1 O(n) rounds using O(n log n) bits per message
2 O(n2/T ) rounds using O(log n) bits per message

They also gave the following lower bound:

Any deterministic centralized algorithm for k-token dissemination in 1-interval
connected graphs requires at least Ω(n log k) rounds to complete in the worst
case
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Possibly Disconnected Dynamic Networks

Not all dynamic networks have connected instances

Most natural dynamic networks are only temporally connected

There are dynamic networks with always disconnected instances in which
information spreads as fast as in those with always connected instances

No results were known for this type of worst-case dynamic networks

Note: All results that follow are from [MCS12a] and [MCS12b]
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Metrics for Disconnectivity

1 Outgoing Influence Time (oit)

2 Incoming Influence Time (iit)

3 Connectivity Time (ct)
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oit

Maximal time until the state of a node influences the state of another node

Minimum k ∈ N s.t. for all u ∈ V and all times t, t ′ ≥ 0 s.t. t ′ ≥ t it holds
that

|future(u,t)(t ′ + k)| ≥ min{|future(u,t)(t ′)|+ 1, n}

Example: the oit of a T -interval connected graph is 1

If a dynamic graph G = (V ,E ) has oit 1 then every instance has at least
dn/2e edges.
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Alternating Matchings
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Soifer’s Dynamic Graph
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Soifer’s Dynamic Graph
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Possibly Disconnected Dynamic Networks

Both examples

have disconnected instances
but have unit oit (thus, dynamic diameter linear in n)

In Soifer’s dynamic graph edges take maximal time to reappear
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iit

Maximal time until the state of a node is influenced by the state of another
node

Minimum k ∈ N s.t. for all u ∈ V and all times t, t ′ ≥ 0 s.t. t ′ ≥ t it holds
that

|past(u,t′+k)(t)| ≥ min{|past(u,t′)(t)|+ 1, n}

Example: the iit of a T -interval connected graph can be up to n − 2
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ct

Maximal time until the two parts of any cut of the network become connected

Minimum k ∈ N s.t. for all times t ∈ N the static graph (V ,
⋃t+k−1

i=t E (i)) is
connected

If the ct is 1 then we obtain a 1-interval connected graph

Greater ct allows for disconnected instances
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Alternating Matchings (ct=2)
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Alternating Matchings (ct=2)
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Alternating Matchings (ct=2)
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Alternating Matchings (ct=2)
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oit vs ct

Proposition
1 oit ≤ ct but

2 there is a dynamic graph with oit 1 and ct = Ω(n).
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oit = 1 and ct = Ω(n)
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oit = 1 and ct = Ω(n)
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TERMINATION AND COMPUTATION
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Termination Criteria

To perform global (terminating) computation, nodes must be able determine
for all times 0 ≤ t ≤ t ′ whether past(u,t′)(t) = V

If nodes know n, then a node can determine at time t ′ whether
past(u,t′)(t) = V by counting all different t-states that it has heard of so far

If n is not known: the subject of our work

Termination criterion: any locally verifiable property that can be used to
determine whether past(u,t′)(t) = V
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Problems/Tasks

Counting: Nodes must determine the network size n

All-to-all Token Dissemination (or Gossip): each node is provided with a
unique token, and all nodes must collect all n tokens

Functions on Inputs: each nodes gets an input symbol from some set X and
the goal is to have all nodes compute some function f on the distributed
input (e.g. min,max,avg)
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Problems/Tasks

Termination criteria can be used to solve these problems

Nodes constantly broadcast all initial states that they have heard of so far

If a node knows at round r that it has been causally influenced by the initial
states of all other nodes, then to solve

Counting: output |past(u,r)(0)|
All-to-all Dissemination: output past(u,r)(0)

Functions: locally compute f on the input symbols of all u ∈ past(u,r)(0)
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Known Upper Bound on the ct

Nodes know some upper bound T on the ct

We give an optimal termination criterion

This gives a protocol for counting, all-to-all token dissemination, and
functions on inputs which is optimal, requiring O(D + T ) rounds in any
dynamic network with dynamic diameter D
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Optimal Protocol

Theorem (Repeated Past)

Node u knows at time t that past(u,t)(0) = V iff past(u,t)(0) = past(u,t)(T ).

Proof

“If”: |past(u,t)(0)| ≥ min{|past(u,t)(T )|+ 1, n}.

vu w

past(u,t)(T )
(w , 0) (v ,T ) (u, t)

r : 1 ≤ r ≤ T
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Optimal Protocol

“Only if”:

v ∈ past(u,t)(0)\past(u,t)(T )
u has not heard from v since time r < T
Arbitrarily many nodes connected to no node until time r − 1 and only to v
thereafter
Thus, arbitrarily many nodes may be concealed from u
Implies that even if past(u,t)(0) = V node u cannot know it

Optimal Protocol:

Nodes constantly forward all 0-states and T -states that they have heard of

They halt as soon as past(u,t)(0) = past(u,t)(T ) and give the desired output
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Known Upper Bound on the oit

Nodes know some upper bound K on the oit

We give a termination criterion which, though being far from the dynamic
diameter, is optimal if a node terminates based on its past set

We then develop a novel technique that gives an optimal termination
criterion based on the future set of a node
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Inefficiency of Hearing the Past

Theorem
In any given dynamic graph with oit upper bounded by K , take a node u and a
time t and denote |past(u,t)(0)| by l. It holds that
|{v : (v , 0) (u, t + Kl(l + 1)/2)}| ≥ min{l + 1, n}.

That is, if a node u has at some point heard of l nodes, then u hears of
another node in O(Kl2) rounds (if an unknown one exists)

The bound is locally computable

Both the upper bound on the oit (K) and the number of existing incoming
influences (l) are known

Straightforward translation to protocols for our problems

Poor time complexity: O(Kn2)

However, some sense of optimality: a node cannot obtain a better upper
bound based solely on K and l
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Inefficiency of Hearing the Past

Even the “Repeated Past” criterion, that is optimal in the ct case, does not
work in the oit case

Essentially, for any t ′, while u has not been yet causally influenced by all
initial states its past set from time 0 may become equal to its past set from
time t ′

Theorem

For any time t ′ (which can only depend on the upper bound K on the oit) there is
a dynamic graph with oit upper bounded by K , a node u, and a time t ∈ N s.t.
past(u,t)(0) = past(u,t)(t ′) while past(u,t)(0) 6= V .
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Hearing the Future

Termination criterion:

If future(u,0)(t) = future(u,0)(t + K) then future(u,0)(t) = V

Fundamental goal: Allow a node know its future set

Novelty: instead of hearing the past, a node now directly keeps track of its
future set and is informed by other nodes of its progress
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Hearing the Future

u
future(u,0)(t)

An outgoing influence must occur
in at most K rounds

u keeps track of future(u,0)(t)

checks whether it has increased by
time t + K

If not, no further nodes can exist

[t, t + K ]
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Protocol Hear from known

A unique leader l (can be dropped)

r denotes the current round

Each node u keeps

Influ: keeps track of all nodes that first heard of (l , 0) by u
Au: keeps track of the Inflv sets that u is aware of, initially set to (u, Influ, 1)
timestamp: initially set to 1
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Protocol Hear from known

u broadcasts in every round (u,Au) and if it has heard of (l , 0) also
broadcasts (l , 0)

If r > max(v 6=u,r ′)∈Influ
{r ′}+ K then u adds (u, r) in Influ

As r is the maximum known time until which u has performed no further
propagations of (l , 0)

If u modifies Influ, it also sets timestamp ← r

u updates Au by storing in it the most recent (v , Inflv , timestamp) triple of
each node v that it has heard of

u clears multiple (w , r) records from the Inflv lists of Au
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Protocol Hear from known

tmax : the maximum timestamp appearing in Al

the maximum time for which the leader knows that some node was influenced
by (l , 0) at that time

R: the set of nodes that the leader knows to have been influenced by (l , 0)

If at some round r it holds at the leader that for all u ∈ R there is a
(u, Influ, timestamp) ∈ Al s.t.

1 timestamp ≥ tmax + K and
2 max(w 6=u,r′)∈Influ{r

′} ≤ tmax

then the leader halts

Intuitively, all influenced nodes did not perform further influences for K
rounds, thus no other nodes exist
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Protocol Hear from known

Theorem
Protocol Hear from known solves counting and all-to-all dissemination in
O(D + K ) rounds by using messages of size O(n log Kn), in any dynamic network
with dynamic diameter D, and with oit upper bounded by some K known to the
nodes.

This is optimal w.r.t. time

To drop the leader assumption:

all nodes begin as leaders
nodes prefer the leader with the smallest id that they have heard of so far
keep an Infl(u,v) only for the smallest v that they have heard of so far
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Improving Message Size

The leader initiates individual conversations with the nodes that it already
knows to have been influenced by its initial state

Sends an invitation to a particular node which is forwarded by all nodes

A node that receives an invitation replies with the necessary data

this message is now preferred and forwarded by all nodes until it gets to the
leader

To make nodes prefer a particular message

we accompany messages with timestamps of creation-time and
have all nodes prefer the data with the most recent timestamps

Terminates in O(Dn2 + K ) rounds by using messages of size O(log D + log n)
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Some Nice Reductions

Theorem

Assume that the oit or the iit of a dynamic graph, G = (V ,E ), is upper bounded

by K. Then for all times t ∈ N the graph (V ,
⋃t+Kbn/2c−1

i=t E (i)) is connected.

Corollary

Any f (n)-time protocol that is correct on 1-interval-connected graphs has an
equivalent Kbn/2c f (n)-time protocol for graphs with either oit or iit upper
bounded by K and known to the nodes.

Proof.

The dynamic graph G ′ = (V ,E ′), where E ′(t) =
⋃tKbn/2c

i=(t−1)Kbn/2c+1 E (i), t ≥ 1, is

1-interval connected.

These results also carry over to the ct case as,

if the ct of a dynamic graph is upper bounded by T , then, for all times
t ∈ N, the dynamic graph (V ,

⋃t+T−1
i=t E (i)) is connected
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ANONYMOUS DYNAMIC NETWORKS
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Counting and Naming in Anonymous Dynamic Networks

Counting: Compute n

Naming: End up with unique identities

Due to our reduction it suffices to focus on 1-interval connected networks

Anonymity: Nodes do not initially have any ids,

Unknown network: Nodes do not know the topology or the size of the
network

We allow minimal knowledge when necessary
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Static Networks with Broadcast

Counting: Impossible to solve without a leader

Naming: Impossible to solve even with a leader and even if nodes know n

These impossibilities carry over to dynamic networks as well

With a leader we solve counting in linear time using O(log n) bits per
message

Nodes labeled with their distance from the leader
Each node u knows the number of upper level neighbors up(u)
Each lowest-level node u sends to the upper level 1/up(u)
Intermediate nodes v sum up the values received from the lower level and send
the result devided by up(v) (which will be only processed by the upper level)
The count arrives in small parts to the leader, that computes it by summing up
A preprocessing step computes the eccentricity of the leader that is necessary
for termination
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Dynamic Networks with Broadcast

Conjecture: Nontrivial computation is impossible

it is impossible to compute (even with a leader) the predicate “exists an a in
the input”.

Thus, assume a unique leader that knows an upper bound
1 d on maximum degree ever to appear in the dynamic network or
2 e on the maximum expansion (maximum number of concurrent new influences

ever occuring)

Naming is still impossible

We have devised protocols that obtain O(dn) and O(n · e) upper bounds on
the count
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Dynamic Networks with One-to-Each

One-to-each message transmission

In every round r , each node u generates a different message mu,v (r) to be
delivered to each current neighbor v
We relax broadcast in order to avoid the previous impossibilities

Unique leader

Without it impossibility of naming persists even under one-to-each

55 / 61



Protocol Dynamic Naming

Already named nodes assign unique ids and acknowledge their id to the
leader

Initially only the leader

All nodes constantly forward all assigned ids that they have heard of so that
they eventually reach the leader

At some round r , the leader knows a set of assigned ids K (r)

The termination criterion

If |K(r)| 6= |V |: in at most |K(r)| additional rounds the leader must hear from
a node outside K(r)
If |K(r)| = |V |: no new info will reach the leader in the future and the leader
may terminate after the |K(r)|-round waiting period ellapses
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Protocol Dynamic Naming

Theorem
Dynamic Naming solves the naming problem in anonymous unknown dynamic
networks under the assumptions of one-to-each message transmission and of a
unique leader. All nodes terminate in O(n) rounds and use messages of size Θ(n2).

The individual conversations technique can again reduce the message size to
Θ(log n) paying in O(n3) termination-time
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Conclusions

We studied for the first time worst-case dynamic networks that are free of
any connectivity assumption about their instances

To enable a quantitative study we proposed some novel generic metrics that
capture the speed of information propagation in dynamic networks

We proved that fast dissemination and computation are possible even under
continuous disconnectivity

We presented optimal termination conditions and protocols based on them
for fundamental distributed computing problems

58 / 61



Open Problems

Improve the O(Dn2 + K ) upper bound on all-to-all dissemination (with
messages of size O(log D + log n) or just O(log n) if possible)

The square is due to the fact that a new influence may be performed at the
same time by many nodes that are unaware of each other.

Improve the O(n3) upper bound on naming (with logarithmic messages)

Give lower bounds for these problems in possibly disconnected dynamic
networks (e.g. for centralized algorithms)

The only known lower bounds for dynamic networks assume connected
instances

Asynchronous communication model for the disconnected case in which
nodes can broadcast when there are new neighbors
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Open Problems

Information dissemination is only guaranteed under continuous broadcasting

How can the number of redundant transmissions be reduced in order to
improve communication efficiency?
Is there a way to exploit visibility to this end?
Does predictability help (i.e. some knowledge of the future)?

Use randomization to construct fast and symmetry-free protocols

Dynamic networks in which nodes have some partial control over their
mobility
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Thank You!
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