A Digital Signature Scheme for Long-Term Security

Dimitrios Poulakis and Robert Rolland

August 25, 2012

Introduction

Many applications of the Information Technology, such as encryption of sensitive medical data or digital signatures for contracts, need long term cryptographic security. Today's cryptography provides strong tools only for short term security.

Introduction

Many applications of the Information Technology, such as encryption of sensitive medical data or digital signatures for contracts, need long term cryptographic security. Today's cryptography provides strong tools only for short term security.

In order to achieve the goal of long-term security for the signatures, Mageberg in his thesis (Technische Universitat Darmstadt 2002) suggested the use of more than one independent signature schemes.

Introduction

Many applications of the Information Technology, such as encryption of sensitive medical data or digital signatures for contracts, need long term cryptographic security. Today's cryptography provides strong tools only for short term security.

In order to achieve the goal of long-term security for the signatures, Mageberg in his thesis (Technische Universitat Darmstadt 2002) suggested the use of more than one independent signature schemes.

Thus, if one of them is broken, then it can be replaced by a new secure one and the document has to be re-signed. Mageberg has proposed protocols that support multiple signatures including the update management in the case of a break.

In this talk we propose a signature scheme which provides an efficient solution to the above problem.

In this talk we propose a signature scheme which provides an efficient solution to the above problem.

It is based on the problems of the integer factorization and the discrete logarithm for elliptic curves. If any of these problems is broken, the other will still be valid and hence the signature will be protected (as long as quantum computers are not present).

Elliptic Curves

An elliptic curve over a field K is a smooth curve defined by an equation of the form

$$
y^{2}+a_{1} y x+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where $a_{1}, a_{3}, a_{2}, a_{4}, a_{6} \in K$.

Elliptic Curves

An elliptic curve over a field K is a smooth curve defined by an equation of the form

$$
y^{2}+a_{1} y x+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where $a_{1}, a_{3}, a_{2}, a_{4}, a_{6} \in K$.

The set of points $E(K)$ of E over K has an abelian group stucture defined by

$$
P \oplus Q \oplus R=0 \Longleftrightarrow P, Q, R \text { collinear. }
$$

Figure: sum of $P=(-1,0)$ and $Q=(0,1)$ over $Y^{2}=X^{3}+1$.

Weil pairing

Let E be an elliptic curve over a field K, \bar{K} the algebraic closure of K, and $n \in \mathbb{Z}^{+}$with char $(K) \nmid n$. Consider the sets

$$
\mu_{n}=\left\{x \in \bar{K} / x^{n}=1\right\}, \quad E[n]=\{P \in E(\bar{K}) / n P=0\} .
$$

Weil pairing

Let E be an elliptic curve over a field K, \bar{K} the algebraic closure of K, and $n \in \mathbb{Z}^{+}$with $\operatorname{char}(K) \nmid n$. Consider the sets

$$
\mu_{n}=\left\{x \in \bar{K} / x^{n}=1\right\}, \quad E[n]=\{P \in E(\bar{K}) / n P=0\} .
$$

The Weil pairing is an application $e_{n}: E[n] \times E[n] \rightarrow \mu_{n}$, which can be efficiently constucted, s. t.

Weil pairing

Let E be an elliptic curve over a field K, \bar{K} the algebraic closure of K, and $n \in \mathbb{Z}^{+}$with $\operatorname{char}(K) \nmid n$. Consider the sets

$$
\mu_{n}=\left\{x \in \bar{K} / x^{n}=1\right\}, \quad E[n]=\{P \in E(\bar{K}) / n P=0\} .
$$

The Weil pairing is an application $e_{n}: E[n] \times E[n] \rightarrow \mu_{n}$, which can be efficiently constucted, s. t.
(1) e_{n} is bilinear;

Weil pairing

Let E be an elliptic curve over a field K, \bar{K} the algebraic closure of K, and $n \in \mathbb{Z}^{+}$with $\operatorname{char}(K) \nmid n$. Consider the sets

$$
\mu_{n}=\left\{x \in \bar{K} / x^{n}=1\right\}, \quad E[n]=\{P \in E(\bar{K}) / n P=0\} .
$$

The Weil pairing is an application $e_{n}: E[n] \times E[n] \rightarrow \mu_{n}$, which can be efficiently constucted, s. t.
(1) e_{n} is bilinear;
(2) $e_{n}(S, T)=e_{n}(T, S)^{-1}, \quad \forall S, T \in E[n]$;

Weil pairing

Let E be an elliptic curve over a field K, \bar{K} the algebraic closure of K, and $n \in \mathbb{Z}^{+}$with $\operatorname{char}(K) \nmid n$. Consider the sets

$$
\mu_{n}=\left\{x \in \bar{K} / x^{n}=1\right\}, \quad E[n]=\{P \in E(\bar{K}) / n P=0\} .
$$

The Weil pairing is an application $e_{n}: E[n] \times E[n] \rightarrow \mu_{n}$, which can be efficiently constucted, s. t.
(1) e_{n} is bilinear;
(2) $e_{n}(S, T)=e_{n}(T, S)^{-1}, \quad \forall S, T \in E[n]$;
(3) $e_{n}(S, T)=1, \forall S \in E[n] \Longleftrightarrow T=0$;

Weil pairing

Let E be an elliptic curve over a field K, \bar{K} the algebraic closure of K, and $n \in \mathbb{Z}^{+}$with $\operatorname{char}(K) \nmid n$. Consider the sets

$$
\mu_{n}=\left\{x \in \bar{K} / x^{n}=1\right\}, \quad E[n]=\{P \in E(\bar{K}) / n P=0\} .
$$

The Weil pairing is an application $e_{n}: E[n] \times E[n] \rightarrow \mu_{n}$, which can be efficiently constucted, s. t.
(1) e_{n} is bilinear;
(2) $e_{n}(S, T)=e_{n}(T, S)^{-1}, \quad \forall S, T \in E[n]$;
(3) $e_{n}(S, T)=1, \forall S \in E[n] \Longleftrightarrow T=0$;
(9) $e_{n}\left(S^{\sigma}, T^{\sigma}\right)=e_{n}(S, T)^{\sigma}, \quad \forall \sigma \in \operatorname{Gal}(\bar{K} / K)$.

Weil pairing

Let E be an elliptic curve over a field K, \bar{K} the algebraic closure of K, and $n \in \mathbb{Z}^{+}$with $\operatorname{char}(K) \nmid n$. Consider the sets

$$
\mu_{n}=\left\{x \in \bar{K} / x^{n}=1\right\}, \quad E[n]=\{P \in E(\bar{K}) / n P=0\} .
$$

The Weil pairing is an application $e_{n}: E[n] \times E[n] \rightarrow \mu_{n}$, which can be efficiently constucted, s. t.
(1) e_{n} is bilinear;
(2) $e_{n}(S, T)=e_{n}(T, S)^{-1}, \quad \forall S, T \in E[n]$;
(3) $e_{n}(S, T)=1, \forall S \in E[n] \Longleftrightarrow T=0$;
(3) $e_{n}\left(S^{\sigma}, T^{\sigma}\right)=e_{n}(S, T)^{\sigma}, \quad \forall \sigma \in \operatorname{Gal}(\bar{K} / K)$.

Note that they are also Tate pairing, eta, ate and omega pairings.

The Proposed Scheme

A user \mathcal{A}, who wants to create a public and a private key selects:

The Proposed Scheme

A user \mathcal{A}, who wants to create a public and a private key selects:
(1) primes p_{1}, p_{2} s.t. the factorization of $n=p_{1} p_{2}$ is infeasible;

The Proposed Scheme

A user \mathcal{A}, who wants to create a public and a private key selects:
(1) primes p_{1}, p_{2} s.t. the factorization of $n=p_{1} p_{2}$ is infeasible;
(2) an elliptic curve $E / \mathbb{F}_{q}, P \in E\left(\mathbb{F}_{q}\right)$ with ord $(P)=n$ and a pairing e_{n} on E s.t. $e_{n}(P, P)$ is a primitive n-th root of 1 ;

The Proposed Scheme

A user \mathcal{A}, who wants to create a public and a private key selects:
(1) primes p_{1}, p_{2} s.t. the factorization of $n=p_{1} p_{2}$ is infeasible;
(2) an elliptic curve $E / \mathbb{F}_{q}, P \in E\left(\mathbb{F}_{q}\right)$ with ord $(P)=n$ and a pairing e_{n} on E s.t. $e_{n}(P, P)$ is a primitive n-th root of 1 ;
(3) $g, a, b \in\{1, \ldots, n\}$ with $\operatorname{gcd}(g, n)=1$ and computes

$$
Q=g^{a} P, \quad r=g^{b} \bmod n, \quad R=g^{a-a b} P
$$

The Proposed Scheme

A user \mathcal{A}, who wants to create a public and a private key selects:
(1) primes p_{1}, p_{2} s.t. the factorization of $n=p_{1} p_{2}$ is infeasible;
(2) an elliptic curve $E / \mathbb{F}_{q}, P \in E\left(\mathbb{F}_{q}\right)$ with ord $(P)=n$ and a pairing e_{n} on E s.t. $e_{n}(P, P)$ is a primitive n-th root of 1 ;
(3) $g, a, b \in\{1, \ldots, n\}$ with $\operatorname{gcd}(g, n)=1$ and computes

$$
Q=g^{a} P, \quad r=g^{b} \bmod n, \quad R=g^{a-a b} P
$$

(1) hash functions $H:\{0,1\}^{*} \rightarrow<P>$ and $h:\{0,1\}^{*} \rightarrow\{0, \ldots, n-1\}$.

The Proposed Scheme

A user \mathcal{A}, who wants to create a public and a private key selects:
(1) primes p_{1}, p_{2} s.t. the factorization of $n=p_{1} p_{2}$ is infeasible;
(2) an elliptic curve $E / \mathbb{F}_{q}, P \in E\left(\mathbb{F}_{q}\right)$ with ord $(P)=n$ and a pairing e_{n} on E s.t. $e_{n}(P, P)$ is a primitive n-th root of 1 ;
(3) $g, a, b \in\{1, \ldots, n\}$ with $\operatorname{gcd}(g, n)=1$ and computes

$$
Q=g^{a} P, \quad r=g^{b} \bmod n, \quad R=g^{a-a b} P
$$

(1) hash functions $H:\{0,1\}^{*} \rightarrow<P>$ and $h:\{0,1\}^{*} \rightarrow\{0, \ldots, n-1\}$.
\mathcal{A} publishes E, e_{n}, h and H.

The Proposed Scheme

A user \mathcal{A}, who wants to create a public and a private key selects:
(1) primes p_{1}, p_{2} s.t. the factorization of $n=p_{1} p_{2}$ is infeasible;
(2) an elliptic curve $E / \mathbb{F}_{q}, P \in E\left(\mathbb{F}_{q}\right)$ with ord $(P)=n$ and a pairing e_{n} on E s.t. $e_{n}(P, P)$ is a primitive n-th root of 1 ;
(3) $g, a, b \in\{1, \ldots, n\}$ with $\operatorname{gcd}(g, n)=1$ and computes

$$
Q=g^{a} P, \quad r=g^{b} \bmod n, \quad R=g^{a-a b} P
$$

(1) hash functions $H:\{0,1\}^{*} \rightarrow<P>$ and $h:\{0,1\}^{*} \rightarrow\{0, \ldots, n-1\}$.
\mathcal{A} publishes E, e_{n}, h and H.
Public key: (g, P, Q, R, r, n).

The Proposed Scheme

A user \mathcal{A}, who wants to create a public and a private key selects:
(1) primes p_{1}, p_{2} s.t. the factorization of $n=p_{1} p_{2}$ is infeasible;
(2) an elliptic curve $E / \mathbb{F}_{q}, P \in E\left(\mathbb{F}_{q}\right)$ with ord $(P)=n$ and a pairing e_{n} on E s.t. $e_{n}(P, P)$ is a primitive n-th root of 1 ;
(3) $g, a, b \in\{1, \ldots, n\}$ with $\operatorname{gcd}(g, n)=1$ and computes

$$
Q=g^{a} P, \quad r=g^{b} \bmod n, \quad R=g^{a-a b} P
$$

(3) hash functions $H:\{0,1\}^{*} \rightarrow<P>$ and $h:\{0,1\}^{*} \rightarrow\{0, \ldots, n-1\}$.
\mathcal{A} publishes E, e_{n}, h and H.
Public key: (g, P, Q, R, r, n).
Private key: $\left(a, b, p_{1}, p_{2}\right)$.

Signature generation

\mathcal{A} wants to sign a message $m \in\{0,1\}^{*}$.

Signature generation

\mathcal{A} wants to sign a message $m \in\{0,1\}^{*}$.
Then he computes

$$
(x, y)=g^{a b} H(m)
$$

and

$$
s=b h(m)+a-a b \bmod \phi(n) .
$$

Signature generation

\mathcal{A} wants to sign a message $m \in\{0,1\}^{*}$.
Then he computes

$$
(x, y)=g^{a b} H(m)
$$

and

$$
s=b h(m)+a-a b \bmod \phi(n) .
$$

The signature of m is the couple (x, s).

Verification

Suppose that (x, s) is the signature of m.

Verification

Suppose that (x, s) is the signature of m.

The receiver determines y such that $\Sigma=(x, y) \in E\left(\mathbb{F}_{q}\right)$.

Verification

Suppose that (x, s) is the signature of m.
The receiver determines y such that $\Sigma=(x, y) \in E\left(\mathbb{F}_{q}\right)$.
He accepts the signature if and only if

$$
e_{n}\left(\pm g^{s} \Sigma, P\right)=e_{n}\left(r^{h(m)} H(m), Q\right)
$$

Verification

Suppose that (x, s) is the signature of m.
The receiver determines y such that $\Sigma=(x, y) \in E\left(\mathbb{F}_{q}\right)$.
He accepts the signature if and only if

$$
e_{n}\left(\pm g^{s} \Sigma, P\right)=e_{n}\left(r^{h(m)} H(m), Q\right)
$$

and

$$
g^{s} r^{-h(m)} P=R .
$$

Security

If an attacker wants to compute a and b from the public key, he has to compute

Security

If an attacker wants to compute a and b from the public key, he has to compute

- a discrete logarithm in the group $\langle P\rangle$

Security

If an attacker wants to compute a and b from the public key, he has to compute

- a discrete logarithm in the group $\langle P\rangle$
- two discrete logarithms modulo n.

Security

If an attacker wants to compute a and b from the public key, he has to compute

- a discrete logarithm in the group $\langle P\rangle$
- two discrete logarithms modulo n.

Note that an algorithm which computes the discrete logarithm modulo n implies an algorithm which breaks the Composite Diffie-Hellman key distribution scheme for n and any algorithm which break this scheme can be used to factorize n.

Suppose there is an oracle \mathcal{O} such that given a public key and a message m provides a signature for m.

Suppose there is an oracle \mathcal{O} such that given a public key and a message m provides a signature for m.

We shall use \mathcal{O} in order to factorize n which is the product of two (unknown) primes.

Suppose there is an oracle \mathcal{O} such that given a public key and a message m provides a signature for m.

We shall use \mathcal{O} in order to factorize n which is the product of two (unknown) primes.

Let $p(d, a)$ be the smallest prime of the arithmetic progression $\{a+k d / k \geq 0\}$. Put

$$
p(d)=\max \{p(d, a) / 1 \leq a<d, \operatorname{gcd}(a, d)=1\}
$$

Suppose there is an oracle \mathcal{O} such that given a public key and a message m provides a signature for m.

We shall use \mathcal{O} in order to factorize n which is the product of two (unknown) primes.

Let $p(d, a)$ be the smallest prime of the arithmetic progression $\{a+k d / k \geq 0\}$. Put

$$
p(d)=\max \{p(d, a) / 1 \leq a<d, \operatorname{gcd}(a, d)=1\}
$$

Conjecture

(Heath-Brown, 1978) $p(d)<C d(\log d)^{2}$.

It follows that there is $j<C(\log 4 n)^{2}$ s. t. $q=4 n j+4 n-1$ is a prime.

It follows that there is $j<C(\log 4 n)^{2}$ s. t. $q=4 n j+4 n-1$ is a prime.

We can find q in polynomial time, using a primality test $O\left((\log n)^{2}\right)$ times.

It follows that there is $j<C(\log 4 n)^{2}$ s. t. $q=4 n j+4 n-1$ is a prime.

We can find q in polynomial time, using a primality test $O\left((\log n)^{2}\right)$ times.

Since $q \equiv 3(\bmod 4)$, the elliptic curve $y^{2}=x^{3}+x$ on \mathbb{F}_{q} is supersingular. Thus

$$
\left|E\left(\mathbb{F}_{q}\right)\right|=q+1=4 n(j+1)
$$

and so, $E\left(\mathbb{F}_{q}\right)$ has a point P of order n.

We consider $g, a, b \in\{1, \ldots, n-1\}$ and we compute

$$
r=g^{b} \bmod n, \quad Q=g^{a} P, \quad R=g^{a-a b} P
$$

(g, P, Q, R, r, n) is a public key for our system.

We consider $g, a, b \in\{1, \ldots, n-1\}$ and we compute

$$
r=g^{b} \bmod n, \quad Q=g^{a} P, \quad R=g^{a-a b} P
$$

(g, P, Q, R, r, n) is a public key for our system.

Then \mathcal{O} gives signatures $\left(S_{i}, s_{i}\right)$ for the messages $m_{i}(i=1, \ldots, k)$ and so, we have

$$
s_{i}=b h\left(m_{i}\right)+a-a b \bmod \phi(n) .
$$

It follows that $\phi(n)$ divides the gad d of the above numbers.

We consider $g, a, b \in\{1, \ldots, n-1\}$ and we compute

$$
r=g^{b} \bmod n, \quad Q=g^{a} P, \quad R=g^{a-a b} P .
$$

(g, P, Q, R, r, n) is a public key for our system.

Then \mathcal{O} gives signatures $\left(S_{i}, s_{i}\right)$ for the messages $m_{i}(i=1, \ldots, k)$ and so, we have

$$
s_{i}=b h\left(m_{i}\right)+a-a b \bmod \phi(n) .
$$

It follows that $\phi(n)$ divides the gcd d of the above numbers.
Assuming the numbers $s_{i}-b h\left(m_{i}\right)-a+a b$ follow the uniform distribution, the probability that two such numbers has gcd $>\phi(n)$ is quite small. Thus, $\phi(n)$ can be easily computed and so the factorization of n.

We consider the following problem:

We consider the following problem:
Computational co-Diffie - Hellman on $\left(G_{1}, G_{2}\right)$. Let G_{1} and G_{2} be two (multiplicative) cyclic groups of prime order $p ; g_{1}$ is a fixed generator of G_{1} and g_{2} is a fixed generator of $G_{2} ; \psi$ is an isomorphism from G_{2} to G_{1}, with $\psi\left(g_{2}\right)=g_{1}$. Given $\gamma_{2}, \gamma_{2}^{\alpha} \in G_{2}$ and $h \in G_{1}$ as input, compute $h^{\alpha} \in G_{1}$.

We consider the following problem:
Computational co-Diffie - Hellman on $\left(G_{1}, G_{2}\right)$. Let G_{1} and G_{2} be two (multiplicative) cyclic groups of prime order $\mathrm{p} ; g_{1}$ is a fixed generator of G_{1} and g_{2} is a fixed generator of $G_{2} ; \psi$ is an isomorphism from G_{2} to G_{1}, with $\psi\left(g_{2}\right)=g_{1}$. Given $\gamma_{2}, \gamma_{2}^{\alpha} \in G_{2}$ and $h \in G_{1}$ as input, compute $h^{\alpha} \in G_{1}$.

The best known algorithm for solving the above problem is to compute discrete logarithm in G_{2}.

We consider the following problem:
Computational co-Diffie - Hellman on $\left(G_{1}, G_{2}\right)$. Let G_{1} and G_{2} be two (multiplicative) cyclic groups of prime order $\mathrm{p} ; g_{1}$ is a fixed generator of G_{1} and g_{2} is a fixed generator of $G_{2} ; \psi$ is an isomorphism from G_{2} to G_{1}, with $\psi\left(g_{2}\right)=g_{1}$. Given $\gamma_{2}, \gamma_{2}^{\alpha} \in G_{2}$ and $h \in G_{1}$ as input, compute $h^{\alpha} \in G_{1}$.

The best known algorithm for solving the above problem is to compute discrete logarithm in G_{2}.

We solve this problem, using \mathcal{O}, for the subgroups of order p_{1} and p_{2} of the group of $\langle P\rangle$.

Let $P_{i} \in E\left(\mathbb{F}_{q}\right)$ with $\operatorname{ord}\left(P_{i}\right)=p_{i}(i=1,2)$. We take $g_{i} \in\left\{1, \ldots, p_{i}-1\right\}$ and $a, b \in\{1, \ldots, \phi(n)\}$ and we compute

$$
Q_{i}=g_{i}^{a} P_{i}, \quad R_{i}=g_{i}^{a-a b} P_{i}, \quad r_{i}=g_{i}^{b} \bmod p_{i}, \quad(i=1,2)
$$

Let $P_{i} \in E\left(\mathbb{F}_{q}\right)$ with $\operatorname{ord}\left(P_{i}\right)=p_{i}(i=1,2)$. We take $g_{i} \in\left\{1, \ldots, p_{i}-1\right\}$ and $a, b \in\{1, \ldots, \phi(n)\}$ and we compute

$$
Q_{i}=g_{i}^{a} P_{i}, \quad R_{i}=g_{i}^{a-a b} P_{i}, \quad r_{i}=g_{i}^{b} \bmod p_{i}, \quad(i=1,2)
$$

Let $g, r \in\{1, \ldots, n-1\}$ such that $g \equiv g_{i}\left(\bmod p_{i}\right)$, $r \equiv r_{i}\left(\bmod p_{i}\right),(i=1,2)$. We set

$$
P=P_{1}+P_{2}, \quad Q=Q_{1}+Q_{2}, \quad R=R_{1}+R_{2} .
$$

It follows that

$$
Q=g^{a} P, \quad R=g^{a-a b} P
$$

Let $P_{i} \in E\left(\mathbb{F}_{q}\right)$ with $\operatorname{ord}\left(P_{i}\right)=p_{i}(i=1,2)$. We take $g_{i} \in\left\{1, \ldots, p_{i}-1\right\}$ and $a, b \in\{1, \ldots, \phi(n)\}$ and we compute

$$
Q_{i}=g_{i}^{a} P_{i}, \quad R_{i}=g_{i}^{a-a b} P_{i}, \quad r_{i}=g_{i}^{b} \bmod p_{i}, \quad(i=1,2)
$$

Let $g, r \in\{1, \ldots, n-1\}$ such that $g \equiv g_{i}\left(\bmod p_{i}\right)$, $r \equiv r_{i}\left(\bmod p_{i}\right),(i=1,2)$. We set

$$
P=P_{1}+P_{2}, \quad Q=Q_{1}+Q_{2}, \quad R=R_{1}+R_{2} .
$$

It follows that

$$
Q=g^{a} P, \quad R=g^{a-a b} P
$$

(g, P, Q, R, r, n) is a public key for our signature scheme.

We apply \mathcal{O} on (g, P, Q, R, r, n) and $m \in\{0,1\}^{*}$, and we get the signature (S, s) for m.

We apply \mathcal{O} on (g, P, Q, R, r, n) and $m \in\{0,1\}^{*}$, and we get the signature (S, s) for m.

Thus, $S=g^{a b} H(m)$, whence $g^{s} r^{-h(m)} S=g^{a} H(m)$.

We apply \mathcal{O} on (g, P, Q, R, r, n) and $m \in\{0,1\}^{*}$, and we get the signature (S, s) for m.

Thus, $S=g^{a b} H(m)$, whence $g^{s} r^{-h(m)} S=g^{a} H(m)$.
Set $S=S_{1}+S_{2}, H(m)=H_{1}+H_{2}$, where $S_{i}, H_{i} \in<P_{i}>$ ($i=1,2$).

We apply \mathcal{O} on (g, P, Q, R, r, n) and $m \in\{0,1\}^{*}$, and we get the signature (S, s) for m.

Thus, $S=g^{a b} H(m)$, whence $g^{s} r^{-h(m)} S=g^{a} H(m)$.
Set $S=S_{1}+S_{2}, H(m)=H_{1}+H_{2}$, where $S_{i}, H_{i} \in<P_{i}>$ ($i=1,2$).

Then,

$$
g_{i}^{s} r_{i}^{-h(m)} S_{i}=g_{i}^{a} H_{i},
$$

and so, $g_{i}^{s} r_{i}^{-h(m)} S_{i}$ is the solution of the computational problem co-Diffie-Hellman with $\gamma_{2}=P_{i}, \alpha=g_{i}^{a}$ and $h=H_{i}(i=1,2)$.

The elliptic curve and the pairing

The construction of an elliptic curve E / \mathbb{F}_{q}, having $P \in E\left(\mathbb{F}_{q}\right)$ with $\operatorname{ord}(P)=n$ is achieved by the following algorithm:

The elliptic curve and the pairing

The construction of an elliptic curve E / \mathbb{F}_{q}, having $P \in E\left(\mathbb{F}_{q}\right)$ with $\operatorname{ord}(P)=n$ is achieved by the following algorithm:
(1) select large prime numbers p_{1}, p_{2} s.t. the factorization of $p_{1}-1, p_{2}-1$ is known and the computation of the factorization of $n=p_{1} p_{2}$ is infeasible;

The elliptic curve and the pairing

The construction of an elliptic curve E / \mathbb{F}_{q}, having $P \in E\left(\mathbb{F}_{q}\right)$ with $\operatorname{ord}(P)=n$ is achieved by the following algorithm:
(1) select large prime numbers p_{1}, p_{2} s.t. the factorization of $p_{1}-1, p_{2}-1$ is known and the computation of the factorization of $n=p_{1} p_{2}$ is infeasible;
(2) select a random prime number p and compute $m=\operatorname{ord}_{n}(p)$;

The elliptic curve and the pairing

The construction of an elliptic curve E / \mathbb{F}_{q}, having $P \in E\left(\mathbb{F}_{q}\right)$ with $\operatorname{ord}(P)=n$ is achieved by the following algorithm:
(1) select large prime numbers p_{1}, p_{2} s.t. the factorization of $p_{1}-1, p_{2}-1$ is known and the computation of the factorization of $n=p_{1} p_{2}$ is infeasible;
(2) select a random prime number p and compute $m=\operatorname{ord}_{n}(p)$;
(3) find, using Broker's algorithm, a supersingular elliptic curve E over $\mathbb{F}_{p^{2 m}}$ with trace $t=2 p^{m}$;

The elliptic curve and the pairing

The construction of an elliptic curve E / \mathbb{F}_{q}, having $P \in E\left(\mathbb{F}_{q}\right)$ with $\operatorname{ord}(P)=n$ is achieved by the following algorithm:
(1) select large prime numbers p_{1}, p_{2} s.t. the factorization of $p_{1}-1, p_{2}-1$ is known and the computation of the factorization of $n=p_{1} p_{2}$ is infeasible;
(2) select a random prime number p and compute $m=\operatorname{ord}_{n}(p)$;
(3) find, using Broker's algorithm, a supersingular elliptic curve E over $\mathbb{F}_{p^{2 m}}$ with trace $t=2 p^{m}$;
(9) return $\mathbb{F}_{p^{2 m}}$ and E.

The elliptic curve and the pairing

The construction of an elliptic curve E / \mathbb{F}_{q}, having $P \in E\left(\mathbb{F}_{q}\right)$ with $\operatorname{ord}(P)=n$ is achieved by the following algorithm:
(1) select large prime numbers p_{1}, p_{2} s.t. the factorization of $p_{1}-1, p_{2}-1$ is known and the computation of the factorization of $n=p_{1} p_{2}$ is infeasible;
(2) select a random prime number p and compute $m=\operatorname{ord}_{n}(p)$;
(3) find, using Broker's algorithm, a supersingular elliptic curve E over $\mathbb{F}_{p^{2 m}}$ with trace $t=2 p^{m}$;
(3) return $\mathbb{F}_{p^{2 m}}$ and E.

Since $t=2 p^{m}$ and $m=\operatorname{ord}_{n}(p)$, we get $\left|E\left(\mathbb{F}_{p^{2 m}}\right)\right|=\left(p^{m}-1\right)^{2}$ and $n \mid p^{m}-1$. Hence $E\left(\mathbb{F}_{p^{2 m}}\right)$ contains a point of order n.

The elliptic curve and the pairing

The construction of an elliptic curve E / \mathbb{F}_{q}, having $P \in E\left(\mathbb{F}_{q}\right)$ with $\operatorname{ord}(P)=n$ is achieved by the following algorithm:
(1) select large prime numbers p_{1}, p_{2} s.t. the factorization of $p_{1}-1, p_{2}-1$ is known and the computation of the factorization of $n=p_{1} p_{2}$ is infeasible;
(2) select a random prime number p and compute $m=\operatorname{ord}_{n}(p)$;
(3) find, using Broker's algorithm, a supersingular elliptic curve E over $\mathbb{F}_{p^{2 m}}$ with trace $t=2 p^{m}$;
(9) return $\mathbb{F}_{p^{2 m}}$ and E.

Since $t=2 p^{m}$ and $m=\operatorname{ord}_{n}(p)$, we get $\left|E\left(\mathbb{F}_{p^{2 m}}\right)\right|=\left(p^{m}-1\right)^{2}$ and $n \mid p^{m}-1$. Hence $E\left(\mathbb{F}_{p^{2 m}}\right)$ contains a point of order n.

Under the assumption of the Generalized Riemman Hypothesis, the time complexity of this algorithm is polynomial.

For the pairing we take ϵ_{n} to be one of the pairings of Weil, Tate, eta, ate, omega on $E[n]$ together with a distortion map ψ such that the points P and $\psi(P)$ is a generating set for $E[n]$ and we consider the pairing

$$
e_{n}(P, Q)=\epsilon_{n}(P, \psi(Q))
$$

Another method for the construction of the elliptic curve E which is quite practical is given by the following algorithm:

Another method for the construction of the elliptic curve E which is quite practical is given by the following algorithm:
(1) draw at random a prime number p_{1} of a given size $/$;

Another method for the construction of the elliptic curve E which is quite practical is given by the following algorithm:
(1) draw at random a prime number p_{1} of a given size l;
(2) draw at random a number p_{2} of size l;

Another method for the construction of the elliptic curve E which is quite practical is given by the following algorithm:
(1) draw at random a prime number p_{1} of a given size l;
(2) draw at random a number p_{2} of size l;
(3) repeat $p_{2}=\operatorname{NextPrime}\left(p_{2}\right)$ until $4 p_{1} p_{2}-1$ is prime;

Another method for the construction of the elliptic curve E which is quite practical is given by the following algorithm:
(1) draw at random a prime number p_{1} of a given size l;
(2) draw at random a number p_{2} of size l;
(3) repeat $p_{2}=\operatorname{NextPrime}\left(p_{2}\right)$ until $4 p_{1} p_{2}-1$ is prime;
(9) return $p=4 p_{1} p_{2}-1$.

Another method for the construction of the elliptic curve E which is quite practical is given by the following algorithm:
(1) draw at random a prime number p_{1} of a given size l;
(2) draw at random a number p_{2} of size l;
(3) repeat $p_{2}=\operatorname{NextPrime}\left(p_{2}\right)$ until $4 p_{1} p_{2}-1$ is prime;
(9) return $p=4 p_{1} p_{2}-1$.

The elliptic curve $E: y^{2}=x^{3}+a x$, where $-a$ is not a square in \mathbb{F}_{p}, is supersingular and so $\left|E\left(\mathbb{F}_{p}\right)\right|=p+1=4 p_{1} p_{2}$. Hence there is $P \in E\left(\mathbb{F}_{p}\right)$ with $\operatorname{ord}(P)=p_{1} p_{2}$.

Another method for the construction of the elliptic curve E which is quite practical is given by the following algorithm:
(1) draw at random a prime number p_{1} of a given size l;
(2) draw at random a number p_{2} of size l;
(3) repeat $p_{2}=\operatorname{NextPrime}\left(p_{2}\right)$ until $4 p_{1} p_{2}-1$ is prime;
(9) return $p=4 p_{1} p_{2}-1$.

The elliptic curve $E: y^{2}=x^{3}+a x$, where $-a$ is not a square in \mathbb{F}_{p}, is supersingular and so $\left|E\left(\mathbb{F}_{p}\right)\right|=p+1=4 p_{1} p_{2}$. Hence there is $P \in E\left(\mathbb{F}_{p}\right)$ with $\operatorname{ord}(P)=p_{1} p_{2}$.

If ϵ is one of the previous pairings on $E[n]$, then we use the distorsion map $\psi(Q)=\psi(x, y)=(-x, i y)$ with $i^{2}=-1$ and so, we have the pairing:

$$
e(P, Q)=\epsilon(P, \psi(Q))
$$

An Example

Let $n=p_{1} p_{2}$, where p_{1}, p_{2} are 256 -bits primes given by $p_{1}=664810154161090130922129022943767028$ 35774195899207559806860541669578637494231 and

$$
p_{2}=115738576089152909314582339834842248600
$$

964273864643984203082855344579907038313.

The number
$q=4 p_{1} p_{2}-1=3077767224488592229836718145145579958981560$
49543649491528758429395644812476708695797071552806849054
64796492983111143287609791419983028317761589419333889211 is a prime.

The number
$q=4 p_{1} p_{2}-1=3077767224488592229836718145145579958981560$
49543649491528758429395644812476708695797071552806849054
64796492983111143287609791419983028317761589419333889211 is a prime.

Since $q \equiv 3(\bmod 4)$, the elliptic curve

$$
E: y^{2}=x^{3}+x
$$

over \mathbb{F}_{q} is superesingular.

The point $P=(x(P), y(P))$, where
$x(P)=24923438302879103041550933768873817553815859007663$
697223031249195408950893859429310143108613613599511882670
676138255514518447219689120752272772341649471097,
$y(P)=73799699734867649666586070170407219349043561538279$
221082751760053853975535811642226331502606869434233624734
77977913210910621732098503146107614456038383100
has order $n=p_{1} p_{2}$.

We take $g=2$,
$a=2^{256}+2^{9}+1=1157920892373161954235709850086879078532$
69984665640564039457584007913129640449,
$b=2^{128}+2^{100}+1=340282368188589063691604008928471416833$.

We have
$r=2^{b} \bmod n=60604738311804190280025275442744666692049$
83610931948163044337248603633561584218746945244152671122
846476465903001270205739179947005024449868606694311195640,

We have
$r=2^{b} \bmod n=60604738311804190280025275442744666692049$
83610931948163044337248603633561584218746945244152671122
846476465903001270205739179947005024449868606694311195640,
$2^{a} \bmod n=301703278105984612331959909384645579259838330$
05888756028098112321910976672707567062559641821552416395
53199078545733822454265640948748520452895571215190867,

We have
$r=2^{b} \bmod n=60604738311804190280025275442744666692049$
83610931948163044337248603633561584218746945244152671122
846476465903001270205739179947005024449868606694311195640,
$2^{a} \bmod n=301703278105984612331959909384645579259838330$
05888756028098112321910976672707567062559641821552416395
53199078545733822454265640948748520452895571215190867,
$2^{a(1-b)} \bmod n=690123530133273230626309389424846277148918$
27389378110998939355239752618466286808970654146996683170
30484535099301214764389216498622653557732787251147641864.

We consider the points $Q=2^{a} P=(x(Q), y(Q))$, where
$x(Q)=726024894374351041059707058043918662331259099369$ 84972829894069637160518521744775478357470740469666592 29829111355206667689244366615968601129874346167442208, $y(Q)=18047895238161753485877117311740831532811194992$

411388021793352694090506314136751081697338862268315480 477288944577615443538174923719718185915981630635761798
and $R=2^{a-a b} P=(x(R), y(R))$, where
$x(R)=10151186689439654567058518823964915155717966972$
738632185569449759143395815855509840876862062561458081
975328415803918866764912971271957844142196652521538840,
$y(R)=118306095688161874550646029575329976723454038037$
4247062216321105042640752614750347687412848937766960487 3066020056701553914845581133039809142240526482663137.

Public key: $(2, P, Q, R, r, n)$. Private key: $\left(a, b, p_{1}, p_{2}\right)$.

Public key: $(2, P, Q, R, r, n)$.
Private key: $\left(a, b, p_{1}, p_{2}\right)$.
We use the Weil or Tate pairing with the distorsion map $\psi(x, y)=\left(-x\right.$, iy) with $i^{2}=-1$.

THANK YOU

