# Beyond polynomial approximation 

 Moderately exponential, subexponential and parameterized approximabilityVangelis Th. Paschos

> ACAC 2012
> University of Athens
(1) Quick recalls
(2) Moderately exponential approximation
(3) Parameterized approximation
(4) A few words about subexponential approximation
(5) Some questions

## (1) Quick recalls

## (2) Moderately exponential approximation

## (3) Parameterized approximation

4. A few words about subexponential approximation
(5) Some questions

## Inapproximability

## Inapproximability result

A statement claiming that a problem is not approximable within ratios better than some approximability level unless something very unlikely happens in complexity theory

- $P=N P$
- Disapproval of the ETH
- ...


## ETH

There exists an $\epsilon>0$ such that no algorithm solves 3 -SAT on $n$ variables in time $2^{\epsilon n}$

## Examples of inapproximability

- MAX INDEPENDENT SET or MAX CLIQUE inapproximable within ratios $\Omega\left(n^{-1}\right)$
- MIN VERTEX COVER within ratios smaller than 2
- MIN SET COVER within ratios o( $\log n$ )
- MIN TSP within better than exponential ratios
- MIN COLORING within ratios $O(n)$
- ...


## PCP (1)

A problem is in $\mathrm{PCP}_{\alpha, \beta}[q, p]$, if there exists a PCP verifier which uses $q$ random bits, reads at most $p$ bits in the proof and is such that:

- if the instance is positive, then there exists a proof such that V accepts with probability at least $\alpha$
- if the instance is negative then, for any proof, V accepts with probability at most $\beta$

For every $\epsilon>0$
$3-\mathrm{SAT} \in \mathrm{PCP}_{1, \epsilon}[(1+o(1)) \log n+O(\log (1 / \epsilon)), O(\log (1 / \epsilon))]$
(Dinur, (2007))

## PCP (2):

 Linear PCP ConjectureLinear PCP Conjecture (LPC)
$|\phi|$ the size of the 3-SAT instance (sum of lengths of clauses)
$c_{1}$ and $c_{2}$ constants

## Parameterized complexity (1)

## Parameterized decision problem

A pair ( $\Pi, k$ ), where $\Pi$ is a decision problem in the sense of (Garey \& Johnson(1979)) and $k$ a parameter (e.g., size of the solution, max degree, vertex cover number, ...)

The size of the solution is often called standard parameter
Fixed parameter tractable problem (FPT problem)
A problem $(\Pi, k)$ is FPT if there exists an algorithm (called FPT algorithm) that decides it in time $O\left(f(k) \mid \|^{c}\right)$, for some computable function $f$ and some constant $c$

The class of FPT problems will be denoted by FPT

## Parameterized complexity (2)

## The W-hierarchy

- Not all problems are in FPT
- Classes W[•] are hardness classes for parameterized complexity
- W[1]-hardness (proved by the so-called parameterized reducibility) is the parameterized equivalent of NP-completeness
- $\mathbf{F P T} \subseteq \mathbf{W}[\mathbf{1}] \subseteq \mathbf{W}[\mathbf{2}] \subseteq \ldots$ (proper containment is conjectured)


## (1) Quick recalls

## (2) Moderately exponential approximation

## (3) Parameterized approximation

(4) A few words about subexponential approximation
(5) Some questions

## The key issue

## Approximate optimal solutions of NP-hard problems within ratios "forbidden" to polynomial algorithms and with worst-case complexity provably better than the complexity of an exact computation

Do it

- For some forbidden ratio
- For any forbidden ratio


## Generate a small number of candidates (1)

## The key-idea

Generate a small number of candidate solutions (polynomially complete them, if necessary and possible) and return the best among them

## Generate a small number of candidates (2): MAX INDEPENDENT SET

- Generate all the $\sqrt{n}$-subsets of $V$
- If one of them is independent, then return it
- Else return a vertex at random

Approximation ratio: ?
Worst-case complexity: ?
It works also for:

- min independent dominating set (Bourgeois, Escoffier \& P (2010))
- capacitated dominating set (Cygan, Pilipczuk \& Wojtaszczyk (2010))


## Divide \& approximate (1)

## The key-idea

Optimally solve a problem in a series of ("small") sub-instances of the initial instance

- Appropriately split the instance in a set of sub-instances (whose sizes are functions of the ratio that is to be achieved)
- Solve the problem in this set
- Compose a solution for the initial instance using the solutions of the sub-instances


## Divide \& approximate (2): Example for is and for $p / q=r=1 / 2$



$$
\left|S^{*}\right| \leqslant\left|S_{1}^{*}\right|+\left|S_{2}^{*}\right| \leqslant 2 \max \left\{\left|S_{1}^{*}\right|,\left|S_{2}^{*}\right|\right\} \Longrightarrow \frac{\max \left\{\left|S_{S^{*}}^{*}\right|,\left|S_{2}^{*}\right|\right\}}{\left|S^{*}\right|} \geqslant \frac{1}{2}
$$

Complexity: $O\left(\gamma^{n / 2}\right)$, if $O\left(\gamma^{n}\right)$ the exact complexity of max INDEPENDENT SET

## Divide \& approximate (3): works also for . . .

If $O\left(\gamma^{n}\right)$ the complexity for MAX INDEPENDENT SET

- MIN VERTEX COVER and MIN SAT: $(2-r)$-approximation in $O\left(\gamma^{r n}\right)\left(O\left(\gamma^{r m}\right)\right.$ for MIN SAT), for any $r$ (Bourgeois, Escoffier \& P (2011)), (Escoffier, P, \& Tourniaire (2012a))
- MAX CLIQUE: $r$-approximation in $O\left(\gamma^{r \Delta}\right)$ ( $\Delta$ the maximum degree of the input-graph), for any $r$ (Bourgeois, Escoffier \& P (2011))

Analogous results hold for MAX SAT (Escoffier, P, \& Tourniaire (2012a))

## Approximately pruning the search tree (1)

> The key idea
> Perform a branch-and-cut by allowing a "bounded error" in order to accelerate the algorithm (i.e., make the instance-size decreasing quicker than in exact computation by keeping the produced error "small")

## Approximately pruning the search tree (2): MAX INDEPENDENT SET

(1) If $\Delta(G) \leqslant 7$, then approximate MAX INDEPENDENT SET polynomially;
(2) else, branch on a vertex $v$ with $d(v) \geqslant 8$ and either take it, remove its neighbors and two more vertices $v_{i}, v_{j}$ such that $\left(v_{i}, v_{j}\right) \in E$, or do not take it

The above algorithm computes an $\frac{1}{2}$-approximation for MAX INDEPENDENT SET in time $O\left(1.185^{n}\right)$

## Approximately pruning the search tree (3): MAX INDEPENDENT SET (cont.)

- If $\Delta(G) \leqslant 7$, approximation ratio $\frac{1}{2}\left(\right.$ ratio $\frac{5}{\Delta(G)+3}$, (Berman \& Fujito (1985)))
- If $\Delta(G) \geqslant 8$, we make an "error" of at most 1 vertex per vertex introduced in the solution (ratio $\frac{1}{2}$ )


## Complexity

$$
T(n) \leqslant T(n-1)+T(n-11)+p(n)=O\left(1.185^{n}\right)
$$

## Approximately pruning the search tree (4): works also for ...

- min set cover (Bourgeois, Escoffier \& P (2009))
- BANDWIDTH (Cygan \& Pilipczuk (2010))
- MIN and MAX SAT (Escoffier, P \& Tourniaire (2012a))
(Escoffier, P \& Tourniaire (2012b)) introduce some formalism for getting approximation schemata by approximation branching algorithms


## Randomization

## The key idea

Achieving ratio $r$ with complexity better than $O\left(\gamma^{r n}\right)$

- Randomly split the graph into subgraphs in such a way that the problem at hand is to be solved in graphs $G_{i}^{\prime}$ of order $r^{\prime} n$ with $r^{\prime}<r$
- Compute the probability $\operatorname{Pr}[r]$ of an $r$-approximation
- Repeat splitting $N(r)$ times to get $r$-approximation with probability $\sim 1$ (in time $N(r) \gamma^{r^{\prime} n}$ )

It works for MAX INDEPENDENT SET, MIN VERTEX COVER, MIN SET COVER, . . (Bourgeois, Escoffier \& P $(2009,2011)$ )

## (1) Quick recalls

## (2) <br> Moderately exponential approximation

## (3) Parameterized approximation

## (4) A few words about subexponential approximation

(5) Some questions

## What is it?

A parameterized (with parameter $k$ ) problem $\Pi$ is $r$-approximable, if there exists an algorithm taking as inputs an instance $I$ of $\Pi$ and $k$ and either computes a solution smaller or greater than $r k$, or returns "no there is no solution of value at most or at least $k$ "

The techniques described previously for moderately exponential approximation remain valid

## Some basic questions

- Given an FPT problem can we get good parameterized approximation algorithms? Can we do this for any FPT problem?
(2) Can a W[•] problem be well-approximable in parameterized time?
(3) Does a highly inapproximable (in polynomial time) problem admit a good parameterized approximation algorithm?


## Question 1 (1)

## MIN VERTEX COVER

Parameterized approximation schemata in time $O\left(\gamma^{(1-f(\epsilon)) k}\right)$ (if $O\left(\gamma^{k}\right)$ is its - exact - parameterized time) by:

- divide \& approximate (Bourgeois, Escoffier \& P (2008))
- approximate pruning of the search tree (Brankovic \& Fernau (2010))
- a kind of approximability preserving reduction, called fidelity preserving transformation (Fellows, Kulik, Rosamond \& Shachnai (2012))


## Question 1 (2)

## EDGE DOMINATING SET

Similar results by approximate pruning of the search tree (Escoffier, Monnot, P \& Xiao (2012))

## BUT

It seems not true for any FPT problem

## Question 2 (1)

MAX (resp. MIN) $k$-CUT
Given $G$ and $k$, find the partition of $V$ into $\left(V_{1}, V_{2}\right)$ with $\left|V_{1}\right|=k$ that maximizes (resp., minimizes) the cut ( $V_{1}, V_{2}$ )

Two "natural" parameters: $k$ and the size $\ell$ of the cut (standard parameter):

- W[1]-hard with respect to $k$ (Cai (2007))
- FPT with respect to $\ell$ (Bonnet, Escoffier, P \& Tourniaire (2012))


## Question 2 (2)

MAX $k$-CUT admits a parameterized approximation schema with respect to $k$ (Bonnet, Escoffier, P \& Tourniaire (2012))

- There exists an $O\left(\Delta^{k}\right)$ exact algorithm for mAX $k$-CUT (Bonnet, Escoffier, P \& Tourniaire (2012))
- Consider as a candidate solution the $k$ larger-degree vertices and take $\epsilon=k^{2} / \Delta$


## Question 2 (3)

The same remains true for MIN $k$-CUT that is:

- W[1]-hard with respect to $k$ (Cai (2007))
- of unknown status with respect to $\ell$ (Bonnet, Escoffier, P \& Tourniaire (2012))


## BUT

We don't know problems having this behaviour when considering standard parameter

## Question 3 (1)

MIN INDEPENDENT DOMINATING SET is not $g(k)$-approximable in FPT time, unless FPT $=\mathbf{W}[2]$ (Downey, Fellows \& McCartin (2006))

What about other paradigmatic problems like MAX INDEPENDENT SET, MIN DOMINATING SET, ... ?

## Question 3 (2)

## LPC © LPG implies the following (Escoffier, Kim \& P (2012))

## Hypothesis H

Under ETH, there exists $r<1$ such that, for every $\epsilon>0$, it is impossible to distinguish between instances of MAX 3-SAT with $m$ clauses where at least $(1-\epsilon) m$ are satisfiable from instances where at most $(r+\epsilon) m$ clauses are satisfiable, in time $O\left(2^{o(m)}\right)$

## Question 3 (3) MAX INDEPENDENT SET

Under H and ETH, for any $\rho \in(0,1)$, no approximation parameterized algorithm for MAX INDEPENDENT SET (i.e., an algorithm that runs in time $f(k) p(n)$ for some function $f$ and some polynomial p) can guarantee approximation ratio $\rho$ (Escoffier, Kim \& P (2012))

Actually, a somewhat stronger result holds
Under $\mathbf{H}$ and ETH, for every $\epsilon>0$, no parameterized approximation algorithm for MAX INDEPENDENT SET running in time $f(k) n^{0(k)}$ can achieve approximation ratio $r+\epsilon$

## Question 3 (4) MIN DOMINATING SET

Under Hand ETH, for every $\epsilon>0$, no approximation algorithm running in time $f(k) n^{0(k)}$ can achieve approximation ratio smaller than $2-r-\epsilon$ for MIN DOMINATING SET (Escoffier, Kim \& P (2012))

The same holds for MIN SET COVER modulo the substitution of $n$ by $m$ (the size of the set-system)

## (1) Quick recalls

## (2) <br> Moderately exponential approximation

## (3) <br> Parameterized approximation

(4) A few words about subexponential approximation
(5) Some questions

## The key-issue

## Approximate optimal solutions of NP-hard problems within ratios "forbidden" to polynomial algorithms and with subexponential worst-case complexity

An anecdotal observation
A very large number of NP-hard problems (at least those whose solutions are subsets of the input data) are solvable either in subexponential, or in FPT time!!!!

## Proof?

## MAX INDEPENDENT SET

> Under ETH, for any $r>0$ and any $\delta>0$, no $r$-approximation algorithm for MAX INDEPENDENT SET van run in time $O\left(2^{n^{1-\delta}}\right)$ (Escoffier, Kim \& P (2012))

## Remark

MAX INDEPENDENT SET is approximable within any ratio $1 / f(n)$ for any unbounded function $f(n)$ in time $O\left(\binom{n}{n / f(n)}\right)$

Just take the largest independent set between the subsets of $V$ with cardinality at most $n / f(n)$

## MIN COLORING and MIN VERTEX COVER

## MIN COLORING

Under ETH, for any $r>1$ and any $\delta>0$, no $r$-approximation algorithm for MIN COLORING can run in time $O\left(2^{n^{1-\delta}}\right)$ (Escoffier, Kim \& P (2012))

## MIN VERTEX COVER

Under ETH, for any $r>0$ and any $\delta>0$, no
( $7 / 6-\epsilon$ )-approximation algorithm for MIN VERTEX COVER can run in time $O\left(2^{n^{1-\delta}}\right)$ (Escoffier, Kim \& P (2012))

The same holds nor for MIN SAT modulo substitution of $n$ by $m$ (the number of clauses in the formula)

## And under H?

If $\mathbf{H}$ holds, then all the previous results become valid for any (non-trivial) time $2^{0(n)}$
(Escoffier, Kim \& P (2012))

## (1) Quick recalls

## (2) <br> Moderately exponential approximation

## (3) <br> Parameterized approximation

(4) A few words about subexponential approximation
(5) Some questions

## Structure of moderately exponential and subexponential approximation (1)

- Moderately exponential and subexponential approximation preserving reductions?
- Is it possible to get moderately exponential inapproximability results? Of what kind? Under what complexity conditions?
- Are there natural problems having some kind of self-improvement property saying, for instance, that $r$-approximability in time $O\left(\gamma^{n}\right)$ implies exact solution in time $O\left(\gamma^{n}\right)$ ?


## Structure of moderately exponential and subexponential approximation (2)

- Is ETH sufficient for showing inapproximability, within any ratio, of MAX INDEPENDENT SET, MIN DOMINATING SET, MIN COLORING in $O\left(2^{o(n)}\right)$ ? Within certain ratios?
- Can we prove subexponential inapproximability of MIN VERTEX COVER or MAX 3-SAT within certain ratios?
- Is it possible to show subexponential inapproximability results under some hypothesis like "there exists some $r$ such that MAX 3-SAT is inapproximable within ratio $r$ in time $O\left(2^{o(n)}\right)$ (an "AETH")?


## Structure of parameterized approximation

- Parameterized approximability preserving reductions (how an "approximation kernel" looks like?)
- is LPC (and, consequently, $\mathbf{H}$ ) true?
- Do we need a "parameterized" PCP? How would it look like?


## E <br> $\gamma$ <br> A <br>  <br> $\Omega$

