▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Online Graph Exploration with Advice

Slovak Academy of Sciences, Bratislava. Stefan.Dobrev@savba.sk

Comenius University, Bratislava. kralovic@dcs.fmph.uniba.sk

University of Central Greece, Lamia. emarkou@ucg.gr

ACAC 2012, Athens

advice

optimality

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

æ

algorithm

Graph exploration

Gedeutstatt sur sechshundert jährigen Dubelbier der Käniglichen Boupt und Nesiden; Stadt Sinigsberg in Preufen.

advice

optimality

algorithm

Graph exploration

Gedentiftatt sur sechshundert jährigen Dubelfeier der Käniglichen Kompt und Nesiden; Stadt Sinigsberg in Preufen.

general statement

Given a ... graph, find a ... closed walk that visits all

advice

optimality

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

algorithm

Graph exploration

Gedenbälatt zur sechshundert jährigen Bibelbier der Königlichen Kompt und Nesiten; Stadt Sonigsberg in Preufen.

our case

Given a weighted undirected graph, find a shortest closed walk that visits all vertices.

onime graph exploration	lower bound	auvice	optimality	algorithm
problem stater	nent			
Given a weight	ted undirected gra	aph,		
find a shortest	closed walk that	visits all vert	ices.	J

æ

online	graph exploration	lower bound	advice	optimality	algorithm
	problem statement				
	Given a weighted ı	undirected graph,	,		
	find a shortest close	ed walk that visi	ts all vertices		

Onnin	e graph exploration	lower bound	advice	optimanty	algorithm
	problem statemen	t			
	Given a weighted find a shortest clo	undirected grapl sed walk that vi	n, sits all vert	ices.	

• equivalent to TSP in the metric closure (vertices may repeat)

onine graph exploration	lower bound	advice	optimality	algorithm
problem statem Given a weighte find a shortest o	ent ed undirected gra closed walk that	aph, visits all vert	ices.	

- equivalent to TSP in the metric closure (vertices may repeat)
- 2.MST is 2-approximation

online graph exploration	lower bound	advice	optimality	algorithm

online graph exploration	lower bound	advice	optimality	algorithm

online graph exploration	lower bound	advice	optimality	algorithm

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

online graph exploration lowe	er bound ac	lvice	optimality	algorithm

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今への

nline graph exploration	lower bound	advice	optimality	al

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

lower bound

advice

optimality

algorithm

agent in vertex *v* sees

unique ID

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

online graph exploration	lower bound	advice	optimality	algorithm

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

online graph exploration low	ver bound	advice	optimality	algorithm

agent in vertex v sees

- unique ID
- weights
- neighbors' IDs

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

online graph exploration	lower bound	advice	optimality	algorithm

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

online graph exploration	lower bound	advice	optimality	algorithm

online graph exploration	lower bound	advice	optimality	algorithm

online graph exploration	lower bound	advice	optimality	algorithm

online graph exploration	lower bound	advice	optimality	algorithm

online graph exploration	lower bound	advice	optimality	algorithm

online graph exploration	lower bound	advice	optimality	algorithm

online graph exploration	lower bound	advice	optimality	algorithm

online graph exploration	lower bound	advice	optimality	algorithm

online graph exploration	lower bound	advice	optimality	algorithm

online graph exploration	lower bound	advice	optimality	algorithm

0F.,				
main question				
	· · · ·	c .	•	

What is the (worst case) **length of** the agent's **traversal compared to** (offline) **optimum?**

online grant

Is there a constant competitive algorithm?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

online graph exploration	lower bound	advice	optimality	algorithm

main question

What is the (worst case) **length of** the agent's **traversal compared to** (offline) **optimum?**

Is there a constant competitive algorithm?

what has been known about competitive ratio

- [Rosenkranz et al., 1977] NN: $\Theta(\log n)$ even on unweighted planar
- [Myazaki et al., 2009] cycles: $\frac{1+\sqrt{3}}{2} \approx 1.366$, unweighted graphs: 2
- [Kalyanasundaram et al., 1994] planar: 16-competitive (general?)
- [Megow et al., 2011] K+ algorithm is not constant competitive

genus g: 16(1+2g)-competitive

k distinct weights: 2k-competitive

wer bound from	n [Myazaki et a	I., 2009]	
	wer bound from	wer bound from [Myazaki et a	wer bound from [Myazaki et al., 2009]

◆□ ▶ ◆■ ▶ ◆ ■ ◆ ● ◆ ● ◆ ● ◆

first task			
Improve the 2	2-arepsilon lower bound	rom [Myazaki	i et al., 2009]
Improve the 2	2-arepsilon lower bound t	from [Myazaki	i et al., 2009]
Improve the 2 we got	2-arepsilon lower bound t	from [Myazaki	i et al., 2009]

◆□ ▶ ◆■ ▶ ◆ ■ ◆ ● ◆ ● ◆ ● ◆

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

ratio with x blocks: $\frac{(x-2)\frac{5}{2}(x-1)+2(x-1)+x(x-2)}{x(x-1)+x(x-2)}$

$$\begin{array}{rcl} r_1 & = & \frac{1}{2}(x-1) \\ t_1 & = & x-2 \\ o_1 & = & x-1 \\ e_1 & \geq & \frac{5}{2}(x-1) \\ \tilde{e}_1 & \geq & x-1 \end{array}$$

ratio x blocks, k levels: $\frac{(x-5)e_k+5\tilde{e}_k+xt_k}{xo_k+xt_k}$

 $k + \chi \iota_k$

ratio x blocks, k levels: $\frac{(x-5)e_k+5\tilde{e}_k+xt_k}{xo_k+xt_k} \approx \frac{5}{2} - 2^{-O(\sqrt{\log n})}$

online graph exploration	lower bound	advice	optimality	algorithm
advice complexity				

advice complexity

advice

- given to the agent at start
- function of input graph
- s-bit binary string
- "relevant" topology information

advice complexity

 v_0

 v_1

• $w(v_i, v_j) = 4 - \min\{i, j\}$

• unique optimal solution

lower bound on advice for optimality

Any optimal algorithm requires $\Omega(n \log n)$ bits in the worst case.

- $w(v_i, v_j) = 4 \min\{i, j\}$
- unique optimal solution
- agent needs log *n* advice

online graph exploration	lower bound	advice	optimality	algorithm

lower bound on advice for optimality

Any optimal algorithm requires $\Omega(n \log n)$ bits in the worst case.

- $w(v_i, v_j) = 4 \min\{i, j\}$
- unique optimal solution
- agent needs log n advice
- cannot distinguish next

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• problem: reversal

lower bound on advice for optimality

Any optimal algorithm requires $\Omega(n \log n)$ bits in the worst case.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

online graph exploration	lower bound	advice	optimality	algorithm
algorithm	tant-competitive	algorithm wi	th linear advice	
	tant-competitive			

rough idea

• traverse some tree

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

lower bound

advice tells the value $\lceil \log(\frac{M}{n}) \rceil$ (*M* is unbounded, but can be done using $O(\log n)$ bits and traversing O(M) total cost.)

algorithm

Advice tells the value $\lceil \log(\frac{M}{n}) \rceil$ by encoding: (n, n', p, l')

Search for the first encountered edge e with $w(e) \in [\frac{M}{n^2}, M]$

- keep traversing the *cheapest* outgoing edge until *n*'-th vertex is encountered,
- consider the p-th incident edge e and let w(e) be its weight,
- $\lceil \log(M) \rceil = \lceil \log(w(e)) \rceil + l'$
- (n', p, l') are chosen in such way that e has the right property.

$O(\log n)$ bits are sufficient to encode n, n', p, l'; Cost: O(M)

- Such an edge e must exist (otherwise the MST weight < M).
- $l' \leq \lceil \log(M) \rceil \lceil \log(\frac{M}{n^2}) \rceil \leq 2 \log n$
- at most *n* cheapest $\left(\frac{M}{n^2}\right)$ outgoing edges; the cost to reach each one is at most $O\left(\frac{M}{n}\right)$.

ж

ъ

- cheap edges always explored by DFS
- cheap clusters connected with expensive edges

- cheap edges always explored by DFS
- cheap clusters connected with expensive edges
- some expensive edges are *tree edges* (i.e. from MST)
- advice must tell which ones in an efficient way

online graph exploration	lower bound	advice	optimality	algorithm

・ロト ・ 日本・ 小田・ 小田・ 小田・

cluster edges

- level 0: cheap
- level *i*: $w(e) \leq 2^i \frac{M}{n}$
- $\leq \frac{n}{2^{i}}$ level-*i* edges in MST

online graph exploration	lower bound	advice	optimality	algorithm

- level 0: cheap
- level *i*: $w(e) \leq 2^i \frac{M}{n}$
- $\leq \frac{n}{2^i}$ level-*i* edges in MST

identify tree edges

- levels in parallel
- separate advice for levels
- O(log i) bits per i-edge

online graph exploration	lower bound	advice	optimality	algorithm

- level 0: cheap
- level *i*: $w(e) \leq 2^i \frac{M}{n}$
- $\leq \frac{n}{2^i}$ level-*i* edges in MST

• all *i*-edges out: OUT

identify tree edges

- levels in parallel
- separate advice for levels
- O(log i) bits per i-edge

<ロ> (四) (四) (三) (三) (三) (三)

online graph exploration	lower bound	advice	optimality	algorithm

- level 0: cheap
- level *i*: $w(e) \leq 2^{i} \frac{M}{n}$
- $\leq \frac{n}{2^i}$ level-*i* edges in MST

identify tree edges

- levels in parallel
- separate advice for levels
- O(log i) bits per i-edge

- all *i*-edges out: OUT
- in edges: WAIT

online graph exploration	lower bound	advice	optimality	algorithm

- level 0: cheap
- level *i*: $w(e) \leq 2^{i} \frac{M}{n}$
- $\leq \frac{n}{2^i}$ level-*i* edges in MST

identify tree edges

- levels in parallel
- separate advice for levels
- $O(\log i)$ bits per *i*-edge

- all *i*-edges out: OUT
- in edges: WAIT
- Iater TRIGGER

online graph exploration	lower bound	advice	optimality	algorithm

- level 0: cheap
- level *i*: $w(e) \leq 2^{i} \frac{M}{n}$
- $\leq \frac{n}{2^i}$ level-*i* edges in MST

identify tree edges

- levels in parallel
- separate advice for levels
- $O(\log i)$ bits per *i*-edge

- all *i*-edges out: OUT
- in edges: WAIT
- Iater TRIGGER

managing multiple triggers is the core of the algorithm

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

online graph exploration	lower bound	advice	optimality	algorithm
open problems				

- so is there a constant competitive algorithm or not?
- improve the lower bound $\frac{5}{2}-\varepsilon$
- any general algorithm better than $O(\log n)$?
- what can be done with polylogarithmic advice? or o(n)?

• lower bounds on advice / trade-off

online graph exploration	lower bound	advice	optimality	algorithm
open problems				

- so is there a constant competitive algorithm or not?
- improve the lower bound $\frac{5}{2}-\varepsilon$
- any general algorithm better than $O(\log n)$?
- what can be done with polylogarithmic advice? or o(n)?
- lower bounds on advice / trade-off

