Online Graph Exploration with
Advice

Stefan Dobrev! and Rastislav Kralovi¢? and
Euripides Markou3

Slovak Academy of Sciences, Bratislava.
Stefan.Dobrev@savba.sk

Comenius University, Bratislava.
kralovic@dcs.fmph.uniba.sk

University of Central Greece, Lamia.
emarkou@ucg.gr

ACAC 2012, Athens

online graph exploration

Graph exploration

e sechshundert jibrigen Sbelier der’ Himiichen Soaupt wnd Reoidens 1o Finigobera. in Freafien

online graph exploration

Graph exploration

general statement

Given a ... graph,
find a ... closed walk that visits all ...

online graph exploration

Graph exploration

Given a weighted undirected graph,
find a shortest closed walk that visits all vertices.

online graph exploration

problem statement

Given a weighted undirected graph,
find a shortest closed walk that visits all vertices.

online graph exploration

problem statement

Given a weighted undirected graph,
find a shortest closed walk that visits all vertices.

10

30

online graph exploration

problem statement

Given a weighted undirected graph,
find a shortest closed walk that visits all vertices.

10

c 0

10

@ equivalent to TSP in the metric closure (vertices may repeat)

online graph exploration

problem statement

Given a weighted undirected graph,
find a shortest closed walk that visits all vertices.

)

10 100

10

@ equivalent to TSP in the metric closure (vertices may repeat)

@ 2-MST is 2-approximation

online graph exploration

online setting: agent

online graph exploration

online setting: agent

Vv]
g
~—can move

online graph exploration

online setting: agent

Y
A ¥~ can not write
~—can move

online graph exploration

online setting: agent

has (polynomial) memol
— (polynomial) ry

Y
A ¥~ can not write
~—can move

online graph exploration

online setting: agent

has (polynomial) memory
<«——cansee

v]
/

A ¥~ can not write

—can move

agent in vertex v sees

online graph exploration

online setting: agent

has (polynomial) memory
<«——cansee
\ ‘ Q
¥~ can not write
~—can move

agent in vertex v sees

@ unique ID

online graph exploration

online setting: agent

has (polynomial) memol
— (polynomial) ry

<«——cansee
g
A ¥~ can not write
—can move

agent in vertex v sees

@ unique ID

o weights

online graph exploration

online setting: agent

has (polynomial) memol
— (polynomial) ry

<«——cansee
g
A ¥~ can not write
—can move

agent in vertex v sees

@ unique ID

o weights

@ neighbors’ IDs

traversed 10 J

traversed 20 J

traversed 45 J

online graph exploration

traversed 55 J

traversed 60)

traversed 61)

traversed 62)

traversed 67)

traversed 97)

traversed 107)

online graph exploration

main question

What is the (worst case) length of the agent's traversal
compared to (offline) optimum?

Is there a constant competitive algorithm? J

online graph exploration

main question

What is the (worst case) length of the agent's traversal
compared to (offline) optimum?

Is there a constant competitive algorithm? J

what has been known about competitive ratio

[Rosenkranz et al., 1977] NN: ©(log n) even on unweighted planar

[Myazaki et al., 2009] cycles: 1+Tﬁ ~ 1.366, unweighted graphs: 2

[Kalyanasundaram et al., 1994] planar: 16-competitive (general?)

[Megow et al., 2011] K+ algorithm is not constant competitive
genus g: 16(1 + 2g)-competitive

k distinct weights: 2k-competitive

Improve the 2 — ¢ lower bound from [Myazaki et al., 2009]

Improve the 2 — ¢ lower bound from [Myazaki et al., 2009]

Any algorithm A is at least % — € competitive on some graph.

we got
Any algorithm A is at least % — & competitive on some graph.

SUUUUUUI SN

we got
Any algorithm A is at least % — & competitive on some graph.

o fixed movement

we got
Any algorithm A is at least % — & competitive on some graph.

o fixed movement

-\ @ block of size x

lower bound

Any algorithm A is at least % — & competitive on some graph.

o fixed movement

-\ @ block of size x

@ orientation

we got
Any algorithm A is at least % — & competitive on some graph.

, L o fixed movement
/ \ \ / block of size x

°
@ orientation
°

x additional edges

lower bound

Any algorithm A is at least % — & competitive on some graph.

, L o fixed movement
/ \ \ / block of size x

orientation

additional edges

e 6 o6 o

‘ x must traverse
1 X g(x -1)

we got
Any algorithm A is at least % — & competitive on some graph.

7 o fixed movement
/ \ \ / @ block of size x
________________ ‘ @ orientation
@ additional edges
‘ x @ must traverse
| h g(x —1)

ratio with x blocks:

we got
Any algorithm A is at least % — & competitive on some graph.

7 o fixed movement
/ \ \ / @ block of size x
________________ ‘ @ orientation
@ additional edges
‘ x @ must traverse
| h g(x —1)

(x=1)

1o

ratio with x blocks:

we got
Any algorithm A is at least % — & competitive on some graph.

7 o fixed movement
/ \ \ / @ block of size x
________________ ‘ @ orientation
@ additional edges
‘ x @ must traverse
| h g(x —1)

5
ratio with x blocks: =221

we got
Any algorithm A is at least % — & competitive on some graph.

7 o fixed movement
/ \ \ / @ block of size x
________________ ‘ @ orientation
@ additional edges
‘ x @ must traverse
| h g(x —1)

ratio with x blocks: (x=2)3 (x=1)+2(x-1)

we got
Any algorithm A is at least % — & competitive on some graph.

7 o fixed movement
/ \ \ / @ block of size x
________________ ‘ @ orientation
@ additional edges
‘ x @ must traverse
| h g(x —1)

ratio with x blocks: el i i)

we got
Any algorithm A is at least % — & competitive on some graph.

7 o fixed movement
/ \ \ / @ block of size x
________________ ‘ @ orientation
@ additional edges
‘ x @ must traverse
| h g(x —1)

(x—=2) g (x=1)+2(x—1)+x(x—2)

ratio with x blocks: M=) Fx(x=2)

we got
Any algorithm A is at least % — & competitive on some graph.

7 o fixed movement
/ \ \ / @ block of size x
________________ ‘ @ orientation
@ additional edges
‘ x @ must traverse
| h g(x —1)

ratio with x blocks:

(X—2)g(X—1)+2(X—1)+X(X—2) o7
x(x—1)+x(x—2) ~ 4

lower bound

refinement: hierarchical construction

~N

n = %(x—l)
t1 = x—-2
op = x-—1
e > 3(x-1)
&g > x-1

ratio x blocks, k levels:

(x75)ek +58,+xty
XOp +Xty J

lower bound

refinement: hierarchical construction

2%
n = %(x—l) riyi = %(X—&-l)r,-—f—%(x—l)t,-
1 = x—2 tit1 = (X = 1)t,‘ + xri
oo = x-—1 oiy1 = xo0i+ (x—1)t;
e > %(X—l) et1 = (x—4)e;+4éi+ g(x—l)t,-—i- 3X;1r;
& > x-1 &1 = (x—5)e +5& + (x— 1)t

ratio x blocks, k levels: (x=5)et58txty % — 2= 0(Vlogn) J

XOp +Xty

advice

advice complexity

online setting: agent

has (polynomial) memory
' <«——can see

¥~ can not write

,—can move

advice complexity

advice

online setting: agent

has (polynomial) memory
! <«——can see

¥~ can not write

,—can move

@ given to the agent at start

@ function of input graph
@ s-bit binary string

@ "relevant” topology information

advice complexity

advice

online setting: agent

has (polynomial) memory
! <«——can see

¥~ can not write

,—can move

@ given to the agent at start

@ function of input graph
@ s-bit binary string

@ "relevant” topology information

advice size vs. solution quality J

lower bound on advice for optimality

optimality

Any optimal algorithm requires Q(nlog n) bits in the worst case.

U3

V4 V2

o w(vj,vj) =4 —min{i,j}

lower bound on advice for optimality

optimality

Any optimal algorithm requires Q(nlog n) bits in the worst case.

U3

V4 V2

o w(vj,vj) =4 —min{i,j}

@ unique optimal solution

lower bound on advice for optimality

optimality

Any optimal algorithm requires Q(nlog n) bits in the worst case.

U3

V4 V2

o w(vj,vj) =4 —min{i,j}
@ unique optimal solution

@ agent needs log n advice

optimality

lower bound on advice for optimality

Any optimal algorithm requires Q(nlog n) bits in the worst case.

v o w(vj,vj) =4 —min{i,j}
3 : . .
_é @ unique optimal solution
—_— @ agent needs log n advice
U4 V2 e
@ cannot distinguish next
@ problem: reversal
Vo U1

optimality

lower bound on advice for optimality

Any optimal algorithm requires Q(nlog n) bits in the worst case.

algorithm

algorithm

There is a constant-competitive algorithm with linear advice.

rough idea

@ traverse some tree

algorithm

algorithm

There is a constant-competitive algorithm with linear advice.

rough idea

cheap unexplored edge

@ traverse some tree

@ DFS has a problem

expehsive unexplored edges

algorithm

algorithm

There is a constant-competitive algorithm with linear advice.

rough idea

cheap unexplored edge

@ traverse some tree
@ DFS has a problem

[! J expohsive unexplored edges
@ MST of weight M | ~— /"

M
@ cheap edge < -

it is always safe to explore a cheap edge)

algorithm

algorithm

There is a constant-competitive algorithm with linear advice.

rough idea

cheap unexplored edge

@ traverse some tree
@ DFS has a problem .
@ MST of weight M N/ T

J expohsive unexplored edges

M
@ cheap edge < -

it is always safe to explore a cheap edge)

advice tells the value [log(%)] (M is unbounded, but can be done
using O(log n) bits and traversing O(M) total cost.)

algorithm

Advice tells the value [log(¥)] by encoding: (n,n’, p, ")

Search for the first encountered edge e with w(e) € [n—’va’ M)

o keep traversing the cheapest outgoing edge until n’—th vertex
is encountered,

o consider the p—th incident edge e and let w(e) be its weight,

o [log(M)] = [log(w(e))] + /'

e (n',p,!") are chosen in such way that e has the right property.

O(log n) bits are sufficient to encode n, n’, p, I'; Cost: O(M)
@ Such an edge e must exist (otherwise the MST weight < M).
o /' < [log(M)] — [log(13)] < 2log n

@ at most n cheapest (

-2) outgoing edges; the cost to reach

each one is at most O % :

@ cheap edges always explored by DFS

@ cheap clusters connected with expensive edges

@ cheap edges always explored by DFS
@ cheap clusters connected with expensive edges

@ some expensive edges are tree edges (i.e. from MST)

@ advice must tell which ones in an efficient way

algorithm

cluster edges

o level 0: cheap
o level i w(e) < 2'

o < 5 level-i edges in MST

algorithm

cluster edges identify tree edges
o level 0: cheap @ levels in parallel
o level i+ w(e) <2'M @ separate advice for levels

o < 7; level-i edges in MST @ O(logi) bits per i-edge

algorithm

dencity e edes

o level 0: cheap @ levels in parallel
o level i+ w(e) <2'M @ separate advice for levels
o < 5 level-i edges in MST @ O(logi) bits per i-edge

o all i-edges out: OUT

algorithm

cluster edges

o level 0: cheap
;. i M
o level it w(e) <275

o < 5 level-i edges in MST

o all i-edges out: OUT
@ in edges: WAIT

identify tree edges

@ levels in parallel
@ separate advice for levels

@ O(log i) bits per i-edge

algorithm

dencity e edes

o level 0: cheap @ levels in parallel

o level i+ w(e) <2'M @ separate advice for levels
o < 5 level-i edges in MST @ O(logi) bits per i-edge
o all i-edges out: OUT

@ in edges: WAIT

o later TRIGGER

algorithm

dencity e edes

o level 0: cheap @ levels in parallel
o level i+ w(e) <2'M @ separate advice for levels
o < 5 level-i edges in MST @ O(logi) bits per i-edge

o all i-edges out: OUT
@ in edges: WAIT
o later TRIGGER

managing multiple triggers is
the core of the algorithm

algorithm

open problems

so is there a constant competitive algorithm or not?
improve the lower bound % —€
any general algorithm better than O(log n)?

what can be done with polylogarithmic advice? or o(n)?

lower bounds on advice / trade-off

algorithm

open problems

so is there a constant competitive algorithm or not?
improve the lower bound % —€
any general algorithm better than O(log n)?

what can be done with polylogarithmic advice? or o(n)?

lower bounds on advice / trade-off

Tha
==

	online graph exploration
	lower bound
	advice
	optimality
	algorithm

