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Graph exploration
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online setting: agent

agent in vertex v sees

unique ID
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neighbors’ IDs
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main question

What is the (worst case) length of the agent’s traversal
compared to (offline) optimum?

Is there a constant competitive algorithm?

what has been known about competitive ratio

[Rosenkranz et al., 1977] NN: Θ(log n) even on unweighted planar

[Myazaki et al., 2009] cycles: 1+
√
3

2 ≈ 1.366, unweighted graphs: 2

[Kalyanasundaram et al., 1994] planar: 16-competitive (general?)

[Megow et al., 2011] K+ algorithm is not constant competitive

genus g : 16(1 + 2g)-competitive

k distinct weights: 2k-competitive
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we got

Any algorithm A is at least 5
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refinement: hierarchical construction

r1 = 1
2
(x − 1)

t1 = x − 2
o1 = x − 1
e1 ≥ 5

2
(x − 1)

ẽ1 ≥ x − 1

ri+1 = 1
2
(x + 1)ri +

1
2
(x − 1)ti

ti+1 = (x − 1)ti + xri
oi+1 = xoi + (x − 1)ti
ei+1 = (x − 4)ei + 4ẽi +

5
2
(x − 1)ti +

3x−1
2

ri
ẽi+1 ≥ (x − 5)ei + 5ẽi + (x − 1)ti

ratio x blocks, k levels: (x−5)ek+5ẽk+xtk
xok+xtk

≈ 5
2 − 2−O(

√
log n)
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”relevant” topology information

advice size vs. solution quality
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lower bound on advice for optimality

Any optimal algorithm requires Ω(n log n) bits in the worst case.

w(vi , vj) = 4−min{i , j}

unique optimal solution

agent needs log n advice

cannot distinguish next

problem: reversal
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lower bound on advice for optimality

Any optimal algorithm requires Ω(n log n) bits in the worst case.
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algorithm

There is a constant-competitive algorithm with linear advice.

rough idea

traverse some tree

DFS has a problem

MST of weight M

cheap edge ≤ M
n

it is always safe to explore a cheap edge

advice tells the value dlog(Mn )e (M is unbounded, but can be done
using O(log n) bits and traversing O(M) total cost.)
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Advice tells the value dlog(Mn )e by encoding: (n, n′, p, l ′)

Search for the first encountered edge e with w(e) ∈ [M
n2
,M]

keep traversing the cheapest outgoing edge until n′−th vertex
is encountered,

consider the p−th incident edge e and let w(e) be its weight,

dlog(M)e = dlog(w(e))e+ l ′

(n′, p, l ′) are chosen in such way that e has the right property.

O(log n) bits are sufficient to encode n, n′, p, l ′; Cost: O(M)

Such an edge e must exist (otherwise the MST weight < M).

l ′ ≤ dlog(M)e − dlog(M
n2

)e ≤ 2 log n

at most n cheapest (M
n2

) outgoing edges; the cost to reach

each one is at most O(Mn ).
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cheap edges always explored by DFS

cheap clusters connected with expensive edges

some expensive edges are tree edges (i.e. from MST)

advice must tell which ones

in an efficient way
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cluster edges

level 0: cheap

level i : w(e) ≤ 2i Mn
≤ n

2i
level-i edges in MST

all i-edges out: OUT

in edges: WAIT

later TRIGGER

managing multiple triggers is
the core of the algorithm

identify tree edges

levels in parallel

separate advice for levels

O(log i) bits per i-edge
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open problems

so is there a constant competitive algorithm or not?

improve the lower bound 5
2 − ε

any general algorithm better than O(log n)?

what can be done with polylogarithmic advice? or o(n)?

lower bounds on advice / trade-off

The End
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