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@ equivalent to TSP in the metric closure (vertices may repeat)

@ 2-MST is 2-approximation
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@ unique ID
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main question

What is the (worst case) length of the agent's traversal
compared to (offline) optimum?

Is there a constant competitive algorithm? J

what has been known about competitive ratio

[Rosenkranz et al., 1977] NN: ©(log n) even on unweighted planar

[Myazaki et al., 2009] cycles: 1+Tﬁ ~ 1.366, unweighted graphs: 2

[Kalyanasundaram et al., 1994] planar: 16-competitive (general?)

[Megow et al., 2011] K+ algorithm is not constant competitive
genus g: 16(1 + 2g)-competitive

k distinct weights: 2k-competitive
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Any algorithm A is at least % — & competitive on some graph.

7 o fixed movement
/ \ \ / @ block of size x
________________ ‘ @ orientation
@ additional edges
‘ x @ must traverse
| h g(x —1)

ratio with x blocks:

(X—2)g(X—1)+2(X—1)+X(X—2) o7
x(x—1)+x(x—2) ~ 4
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online setting: agent

has (polynomial) memory
! <«——can see

¥~ can not write

,—can move

@ given to the agent at start

@ function of input graph
@ s-bit binary string

@ "relevant” topology information

advice size vs. solution quality J
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lower bound on advice for optimality

Any optimal algorithm requires Q(nlog n) bits in the worst case.

v o w(vj,vj) =4 —min{i,j}
3 : . .
_é @ unique optimal solution
—_— @ agent needs log n advice
U4 V2 e
@ cannot distinguish next
@ problem: reversal
Vo U1
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There is a constant-competitive algorithm with linear advice.

rough idea

cheap unexplored edge

@ traverse some tree
@ DFS has a problem .
@ MST of weight M N/ T

J expohsive unexplored edges

M
@ cheap edge < -

it is always safe to explore a cheap edge )

advice tells the value [log(%)] (M is unbounded, but can be done
using O(log n) bits and traversing O(M) total cost.)
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Advice tells the value [log(¥)] by encoding: (n,n’, p, ")

Search for the first encountered edge e with w(e) € [n—’va’ M)

o keep traversing the cheapest outgoing edge until n’—th vertex
is encountered,

o consider the p—th incident edge e and let w(e) be its weight,

o [log(M)] = [log(w(e))] + /'

e (n',p,!") are chosen in such way that e has the right property.

O(log n) bits are sufficient to encode n, n’, p, I'; Cost: O(M)
@ Such an edge e must exist (otherwise the MST weight < M).
o /' < [log(M)] — [log(13)] < 2log n

@ at most n cheapest (

-2) outgoing edges; the cost to reach

each one is at most O % :
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@ cheap edges always explored by DFS
@ cheap clusters connected with expensive edges

@ some expensive edges are tree edges (i.e. from MST)

@ advice must tell which ones in an efficient way
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dencity e edes

o level 0: cheap @ levels in parallel
o level i+ w(e) <2'M @ separate advice for levels
o < 5 level-i edges in MST @ O(logi) bits per i-edge

o all i-edges out: OUT
@ in edges: WAIT
o later TRIGGER

managing multiple triggers is
the core of the algorithm
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