
Finding Dominators in Interprocedural Flowgraphs

Loukas Georgiadis
University of Ioannina

 dominates if every path from to includes

Flowgraphs and Dominators

Flowgraph : all vertices are reachable from start vertex

set of vertices that dominate

Trivial dominators :

Application areas : Program optimization, VLSI testing, theoretical biology,

distributed systems, constraint programming,…

immediate dominator of ; is dominated by all

Flowgraphs and Dominators

for (; p<stop; p++) {

 int v = order[*p];

 if (v) {

 int u;

 if (v<=i) {u=v;}

 else {

 compress(v);

 u = label[v];

 }

 if (s[u]<s[i]) s[i] = s[u];

 }

}

Program analysis and optimization: loop optimizations, structural analysis,

control dependences,…

Flowgraphs and Dominators

dominator tree of

algorithm: [Lengauer and Tarjan ’79]

algorithms:

[Buchsbaum, Kaplan, Rogers, and Westbrook ‘04]

[G., and Tarjan ‘04]

[Alstrup, Harel, Lauridsen, and Thorup ‘97]

[Buchsbaum et al. ‘08]

 dominates if every path from to includes

Flowgraph : all vertices are reachable from start vertex

Iterative Algorithm

Dominators can be computed by solving iteratively a set of equations

[Allen and Cocke, 1972]

Efficient implementation [Cooper, Harvey and Kennedy 2000]:

Initialization

Maintain tree ; process the edges until a fixed-point is reached.

Process : compute nearest common ancestor of and in .

 If is ancestor of parent of , make new parent of .

Iterative Algorithm

Dominators can be computed by solving iteratively a set of equations

[Allen and Cocke, 1972]

Efficient implementation [Cooper, Harvey and Kennedy 2000]:

Initialization

Maintain tree ; process the edges until a fixed-point is reached.

Process : compute nearest common ancestor of and in .

 If is ancestor of parent of , make new parent of .

iterations, intersections per iteration, time per intersection

total running time

Purdom-Moore Algorithm

Uses reachability computations running time

For every

Compute the set of unreachable vertices from in

For every add to

Purdom-Moore Algorithm

Uses reachability computations running time

For every

Compute the set of unreachable vertices from in

For every add to

Lengauer-Tarjan Algorithm (LT)

Depth-First Search DFS tree + numbering

Semidominator :

Semidominator path (sdom-path) :

such that

was visited by DFS before

Lengauer-Tarjan Algorithm (LT)

Main operation : Compute path minima on DFS tree

Lengauer-Tarjan Algorithm (LT)

Main operation : Compute path minima on DFS tree

Lengauer-Tarjan Algorithm (LT)

Main operation : Compute path minima on DFS tree

Uses path compression to speed up computations:

link-eval data structure (based on disjoint set union)

Running time

-Link-eval without balancing:

-Link-eval with balancing:

In practice the simple version of LT

is faster and runs in linear time

Iterprocedural Flowgraphs

for (; p<stop; p++) {

 int v = order[*p];

 if (v) {

 int u;

 if (v<=i) {u=v;}

 else {

 compress(v);

 u = label[v];

 }

 if (s[u]<s[i]) s[i] = s[u];

 }

}

Iterprocedural Flowgraphs

for (; p<stop; p++) {

 int v = order[*p];

 if (v) {

 int u;

 if (v<=i) {u=v;}

 else {

 compress(v);

 u = label[v];

 }

 if (s[u]<s[i]) s[i] = s[u];

 }

}

Iterprocedural Flowgraphs

main procedure

procedure procedure

call

return

call

return

interprocedural flowgraph
transitive reduction of the

dominance relation in

Iterprocedural Flowgraphs

procedure

call

return

interprocedural flowgraph
transitive reduction of the

dominance relation in

Iterprocedural Flowgraphs

Interprocedural flowgraph

The vertex set is partitioned into procedures ; set of procedures

Each procedure has unique entry and exit

main procedure that contains global start and terminal

main procedure

procedure procedure

call

return

call

return

Iterprocedural Flowgraphs

Interprocedural flowgraph

The vertex set is partitioned into procedures ; set of procedures

Each procedure has unique entry and exit

main procedure that contains global start and terminal

procedure

call

return

Call/return1-1 correspondence

A call edge has a unique corresponding

return edge

call node for

return node for

Iterprocedural Flowgraphs

Interprocedural flowgraph

Full path: such that and

Valid full path: with proper nesting of call/return edges

• Each occurrence of a return edge on is preceded by the corresponding

 occurrence of

• There is a 1-1 correspondence between the occurrences of call and return edges

 on

• If there is an occurrence of a call edge on that precedes an occurrence

 of a call edge then either the corresponding occurrence of precedes

 or the corresponding occurrence of precedes the corresponding occurrence

 of

Iterprocedural Flowgraphs

Interprocedural flowgraph

Full path: such that and

Valid full path: with proper nesting of call/return edges

Valid path: Prefix of a full valid path procedure

call

return

Unlike the intraprocedural case we cannot

consider simple paths only

Iterprocedural Flowgraphs

Interprocedural flowgraph

Full path: such that and

Valid full path: with proper nesting of call/return edges

Valid path: Prefix of a full valid path

Dominance: A vertex dominates a vertex if every valid path to contains

transitive reduction of dominance relation in

 is a directed acyclic graph; can have arcs,

where

Algorithms

Reachability algorithm: time, space

• Reps, Horwitz and Sagiv (1995)

• Ezick, Bilardi and Pingali (2001)

New algorithm: time, space

Iterative algorithm: time, space

• de Sutter, van Put and de Bosschere (2007)

All the above support the following queries:

 Return the dominators of a query vertex in time

 Given query vertices and test if dominates in time

matrix multiplication exponent

Context-Sensitive Reachability

main procedure

procedure procedure

call

return

call

return

Context-Sensitive Depth-First Search (CSDFS)

[de Sutter, van Put and de Bosschere, TOPLAS 2007]

Traverse a return edge only if has already been processed

Context-Sensitive Reachability

main procedure

procedure procedure

call

return

call

return

Context-Sensitive Depth-First Search (CSDFS)

[de Sutter, van Put and de Bosschere, TOPLAS 2007]

Traverse a return edge only if has already been processed

1

2

3

4

5

6

7

8

9

10

11

12

Running time

Iterprocedural Flowgraphs

Interprocedural flowgraph

Full path: such that and

Valid full path: with proper nesting of call/return edges

Valid path: Prefix of a full valid path

Dominance: A vertex dominates a vertex if every valid path to contains

Valid subpath: Suffix of a valid path

Matched subpath: Valid subpath that has no unmatched occurrence of a call or a

 return edge

Overview of the new algorithm

Let be a vertex in procedure

Internal Dominators

External Dominators

vertices included in all matched subpaths from to

vertices included in all valid paths from to

We have

It can be

Computing Internal Dominators

Internal Post-Dominators

Consider procedures and

 is an internal post-dominator of if every matched subpath from

to contains

We can compute all internal post-dominators of all procedures in time

Lemma

Form a new graph from with new start

and edges for all

 is an internal post-dominator of if and

only if is unreachable in

Computing Internal Dominators

Reduced flowgraphs

Graph for procedure

where special vertices, one for each procedure called from

Computing Internal Dominators

Reduced flowgraphs

Graph for procedure

where special vertices, one for each procedure called from

Each special vertex is assigned a set of labels

Label-recursive procedure

contains a special vertex such that

Labels of vertex

set of labels that appear on every valid path from to

if and only if is an internal post-dominator of

We can compute all vertex labels in time and space

Computing Internal Dominators

Reduced flowgraphs

Graph for procedure

, special vertices, one for each procedure called from

Auxiliary flowgraphs

Graph is formed from as follows

We remove all special vertices and their incident edges

For each call edge and corresponding return edge

in we add in

Computing Internal Dominators

Reduced flowgraphs

Graph for procedure

, special vertices, one for each procedure called from

Auxiliary flowgraphs

Graph is formed from as follows

We remove all special vertices and their incident edges

For each call edge and corresponding return edge

in we add in

Graph is formed from as follows

For each call edge and corresponding return edge

in such that we remove from

Computing Internal Dominators

Non label-recursive procedure

Let and , where is not label-recursive. Then

if and only if either

(a) and , or

(b) , and

Computing Internal Dominators

Label-recursive procedure

Let be a label-recursive procedure. Then

Status of a vertex

• unreachable if there is no path in

• affected if it is not unreachable but

• unaffected if

Computing Internal Dominators

Label-recursive procedure

Let where is label-recursive.

• If is affected then

• If is unreachable then

Computing External Dominators

Full and Partial Dominators

Consider procedures and

• fully dominates if dominates

• partially dominates if dominates but does not

We can compute all full and partial dominators in time using the

reachability algorithm

The challenge is to compute when partially dominates

Computing External Dominators

Call Graph

main procedure

procedure procedure

call

return

call

return

if and only if is called from

Computing External Dominators

Call Graph

if and only if is called from

Computing takes time

matrix multiplication exponent

We can use the transitive closure of to compute

when partially dominates

Perspective

• Thorup (1998): Structured programs have intraprocedural control-flow graphs

 with small treewidth (typically <3)

• Hecht and Ullman (1972): Structured programs (usually) have reducible

 intraprocedural control-flow graphs

 Other program optimization problems in intraprocedural flowgraphs?

 Performance of new algorithm(s) in practice?

 Theory for structured programs?

• Can we say something useful about interprocedural flowgraphs of structured

 programs?

Thank You!

