Finding Dominators in Interprocedural Flowgraphs

Loukas Georgiadis
University of loannina

Flowgraphs and Dominators
Flowgraph G = (V, E,r) : all vertices are reachable from start vertex r

v dominates w if every path from r to w includes v

Dom(w) = set of vertices that dominate w

Trivial dominators : r,w € Dom/(w)

idom(w) = immediate dominator of w ; is dominated by all Dom(w) — w

Application areas : Program optimization, VLSI testing, theoretical biology,
distributed systems, constraint programming,...

Flowgraphs and Dominators

for (; p<stop; p++) {
int v = order[*p]; CS
1 £ 86)
ILTSR B £

if (v<=1i) {u=v;}
e L it
compress (v) ;
u = label[v];

e e MEL Y A R P ER S I B (S RS T I

Program analysis and optimization: loop optimizations, structural analysis,
control dependences,...

Flowgraphs and Dominators

Flowgraph G = (V, E,r) : all vertices are reachable from start vertex r

v dominates w if every path from r to w includes v

G D = dominator tree of (G

O(m()a(m, ?’L)) algorithm: [Lengauer and Tarjan ’79]

O(m + n) algorithms:
[Alstrup, Harel, Lauridsen, and Thorup ‘97]
[Buchsbaum, Kaplan, Rogers, and Westbrook ‘04]
[G., and Tarjan ‘04]
[Buchsbaum et al. ‘08]

Iterative Algorithm

Dominators can be computed by solving iteratively a set of equations
[Allen and Cocke, 1972]

Dom(v) = (ﬂ(u,U)GA Dom(u)) U{v},v#r

Initialization Dom(r) = {r}, Dom(v) = 0,v # r

Efficient implementation [Cooper, Harvey and Kennedy 2000].

Maintain tree 7' ; process the edges until a fixed-point is reached.

Process (u,v): compute x = nearest common ancestor of 4 and v in T.
If is ancestor of parent of v, make * new parent of v.

é/@gncagp(u, V) mncaT(u, V)
=) v

Iterative Algorithm

Dominators can be computed by solving iteratively a set of equations
[Allen and Cocke, 1972]

Dom(v) = (m(u,v)GA Dom(u)) U{v},v#r
Initialization Dom(r) = {r}, Dom(v) = 0,v #£ r

Efficient implementation [Cooper, Harvey and Kennedy 2000].

Maintain tree 7' ; process the edges until a fixed-point is reached.

Process (u,v): compute x = nearest common ancestor of 4 and v in T.
If is ancestor of parent of v, make * new parent of v.

O(n) iterations, O(m) intersections per iteration, O(n) time per intersection

= O(mn?) total running time

Purdom-Moore Algorithm

Uses n reachability computations = O(mn) running time

Forevery x € V

Compute the set U(x) of unreachable vertices from r in G — x

Forevery v € U(z) add x to Dom(v)

Purdom-Moore Algorithm

Uses n reachability computations = O(mn) running time

Forevery x € V

Compute the set U(x) of unreachable vertices from r in G — x

Forevery v € U(z) add x to Dom(v)

U(d) = {b,c, [}

Lengauer-Tarjan Algorithm (LT)

Depth-First Search =) DFS tree + numbering pre

pre(v) < pre(w) : v was visited by DFS before w

Semidominator path (sdom-path) :
= (’U(), SSNA S L ’Uk;) such that

pre(v;) > pre(vg), i =1,2,...,k—1

Semidominator :

sdom(w) = argmin { pre(v) | 3 sdom-path from v to w }

Lengauer-Tarjan Algorithm (LT)

Main operation : Compute path minima on DFS tree

Lengauer-Tarjan Algorithm (LT)

Main operation : Compute path minima on DFS tree

Lengauer-Tarjan Algorithm (LT)

Main operation : Compute path minima on DFS tree

Uses path compression to speed up computations: e
link-eval data structure (based on disjoint set union)

Running time

-Link-eval without balancing: O(mlogn)
-Link-eval with balancing: O(ma(m,n))

In practice the simple version of LT

Is faster and runs in linear time
sdom(d) = a

Iterprocedural Flowgraphs

for (; p<stop: p++) {
int v = order[*p];
e o pliny)1 2
e Y

if (v<=1i) {u=v;}
e L it
compress (V) ;
u = label[v];

Iterprocedural Flowgraphs

for (; p<stop: p++) {
int v = order[*p];
e o pliny)1 2
e Y

if (v<=1i) {u=v;}

else {
compress (V) ;
u = label[v];

Iterprocedural Flowgraphs

procedure A

main procedure M\

—— —
e ——
b N —

procedure B

interprocedural flowgraph G

D = transitive reduction of the
dominance relation in &

Iterprocedural Flowgraphs

procedure P

D = transitive reduction of the

interprocedural flowgraph & . ik
P grap dominance relation in &

Iterprocedural Flowgraphs

Interprocedural flowgraph G = (V, E, r,t)
The vertex set V' s partitioned into procedures P € P ; P = set of procedures
Each procedure P € P has unique entry r(P) and exit t(P)

M € P = main procedure that contains global start » = (M) and terminal ¢ = ¢t(M)

main procedure M

r
procedure A ﬁ@A@b\ procedure B

Iterprocedural Flowgraphs

Interprocedural flowgraph G = (V, E,r,t)

The vertex set V' s partitioned into procedures P € P ; P = set of procedures
Each procedure P € P has unique entry r(P) and exit t(P)

M € P = main procedure that contains global start » = (M) and terminal ¢ = ¢t(M)

Call/returnl-1 correspondence ¢

rocedure P
Acall edge (z,r(P)) has a unique corresponding :

return edge ¢((x,7(P))) = (t(P),y) r(P) Qé/gO

|
|
x = call node for P |
y = return node for P t(P)ES'\ return

Iterprocedural Flowgraphs Y diss
T(P)é§
Interprocedural flowgraph G = (V, E, r,t) P fuélé
|
ok

Full path: p = (p1,p2,...,pr) suchthat p; =r and pr =1 ~50

Valid full path: p = (p1 = 7,p2,...,px = t) with proper nesting of call/return edges

* There is a 1-1 correspondence between the occurrences of call and return edges
on p

« Each occurrence of areturn edge e on p is preceded by the corresponding
occurrence of ¢~ !(e)

« If there is an occurrence of a call edge e on p that precedes an occurrence
of a call edge €’ then either the corresponding occurrence of ¢(e) precedes €’
or the corresponding occurrence of ¢(e’) precedes the corresponding occurrence

of ¢(e)

Iterprocedural Flowgraphs
Interprocedural flowgraph G = (V, E,r,t)

Full path: p = (p1,p2,...,pr) suchthat p; =r and pr =1

Valid full path: p = (p1 = 7,p2,...,px = t) with proper nesting of call/return edges

Valid path: Prefix of a full valid path procedure P

Unlike the intraprocedural case we cannot
consider simple paths only

t(P) return

Iterprocedural Flowgraphs
Interprocedural flowgraph G = (V, E,r,t)

Full path: p = (p1,p2,...,pr) suchthat p; =r and pr =1

Valid full path: p = (p1 = 7,p2,...,px = t) with proper nesting of call/return edges

Valid path: Prefix of a full valid path

Dominance: Avertex v dominates a vertex w if every valid path to w contains v

D = transitive reduction of dominance relation in &

D is a directed acyclic graph; can have (n\) arcs,
where A = |P|

Algorithms

Reachability algorithm: O(mn) time, O(n*) space
* Reps, Horwitz and Sagiv (1995)
» Ezick, Bilardi and Pingali (2001)

Iterative algorithm: O(mn?) time, O(n?) space
» de Sutter, van Put and de Bosschere (2007)

New algorithm: O(mA + A*) time, O(n\) space
A= |P|, w < 2.3727 matrix multiplication exponent

All the above support the following queries:
= Return the dominators of a query vertex v in O(|Dom(v)|) time
= Given query vertices v and w testif v dominates w in O(1) time

Context-Sensitive Reachability

Context-Sensitive Depth-First Search (CSDFS)
[de Sutter, van Put and de Bosschere, TOPLAS 2007]

Traverse a return edge € only if Gﬁ_l(e) has already been processed

main procedure M\

r
procedure A ﬁ@A@b\ procedure B

r(Ayge—cat [~ G _cat==y 1 (B)
- e

t(A) "t O R d | return- t(B)
8 — ~ f

Context-Sensitive Reachability

Context-Sensitive Depth-First Search (CSDFS)
[de Sutter, van Put and de Bosschere, TOPLAS 2007]

Traverse a return edge € only if cb_l(e) has already been processed

Running time = O(m)

main procedure M\

procedure A

procedure B

Iterprocedural Flowgraphs
Interprocedural flowgraph G = (V, E,r,t)

Full path: p = (p1,p2,...,pr) suchthat p; =r and pr =1

Valid full path: p = (p1 = 7,p2,...,px = t) with proper nesting of call/return edges

Valid path: Prefix of a full valid path

Dominance: Avertex v dominates a vertex w if every valid path to w contains v

Valid subpath: Suffix of a valid path

Matched subpath: Valid subpath that has no unmatched occurrence of a call or a
return edge

Overview of the new algorithm

Let v be avertexin procedure P

Internal Dominators

IntDom(wv) = vertices included in all matched subpaths from r(P) to v

External Dominators

ExtDom(v) = vertices included in all valid paths from 7 to r(P)

///—O %
ltcan be IntDom(v) N ExtDom(v) # () ?“(P)Eé
3
v
We have Dom(v) = IntDom(v) U ExtDom(v) P |
|
t(P)Eé

Computing Internal Dominators

Internal Post-Dominators

Consider procedures P and @

Q) is an internal post-dominator of P if every matched subpath from 7(F)
to t(P) contains r(Q)

Lemma

We can compute all internal post-dominators of all procedures in O(mA) time

Form a new graph G’ from G with new start 7’
and edges (r/,r(P)) forall P e P

@ is an internal post-dominator of P if and
only if t(P) is unreachablein G’ —r(Q)

Computing Internal Dominators

Reduced flowgraphs
Graph Gp = (Vp, Ep,7(P),t(P)) for procedure P

Vp=PUS where S = special vertices, one for each procedure called from P

P
r(P)
< Ab\ i
r(A) (ﬁi— o R —tﬁy r(B)
t(A)Elﬁfifi><§§C>% t(B) g
€ f
t(P)

Computing Internal Dominators

Reduced flowgraphs
Graph Gp = (Vp, Ep,7(P),t(P)) for procedure P
Vp =PUS where S = special vertices, one for each procedure called from P

Each special vertex () is assigned a set of labels L(Q) C P

W e L(Q) ifandonlyif 1/ is an internal post-dominator of @

Label-recursive procedure P

G p contains a special vertex Q suchthat P € L(Q)

Labels of vertex v € P

Labels(v) = set of labels that appear on every valid path from r(P) to v

We can compute all vertex labels in O(mA) timeand O(n\) space

Computing Internal Dominators

Reduced flowgraphs
Graph Gp = (Vp, Ep,7(P),t(P)) for procedure P

Vp = PUSp, Sp = special vertices, one for each procedure called from P

Auxiliary flowgraphs

Graph Gp = (Vp, Ep,r(P),t(P)) is formed from Gp as follows
We remove all special vertices and their incident edges

For each call edge e = (z,Q) and corresponding return edge ¢(e) = (Q,y)
in Gp weadd (z,y) in Fp

Computing Internal Dominators

Reduced flowgraphs
Graph Gp = (Vp, Ep,7(P),t(P)) for procedure P

Vp = PUSp, Sp = special vertices, one for each procedure called from P

Auxiliary flowgraphs

Graph Gp = (Vp, Ep,r(P),t(P)) is formed from Gp as follows
We remove all special vertices and their incident edges

For each call edge e = (z,Q) and corresponding return edge ¢(e) = (Q,y)
in Gp weadd (z,y) in Fp

Graph Gp = (Vp, Ep,r(P),t(P)) is formed from (3, as follows
For each call edge ¢ = (513', Q) and corresponding return edge gb(e) = (Q, y)
in Gp suchthat P € L(Q) we remove (x,y) from Ep

Computing Internal Dominators

Non label-recursive procedure

Let v€ P and w € @, where P is not label-recursive. Then w € IntDom/(v)
if and only if either

@ P=@ and we€ Domg (v), or

(b) P#Q, Q€ Labels(v) and w € Domg,(t(Q)) NEQ

Computing Internal Dominators

Label-recursive procedure

Let P be a label-recursive procedure. Then

Domg, (t(P)) N P = Domg _ (t(P))

Status of a vertex v € Gp
 unreachable if thereisno r(P)-v pathin Gp
- affected if it is not unreachable but Domg (v) # Domg , (v)

» unaffected if Domg (v) = Domg , (v)

Computing Internal Dominators

Label-recursive procedure
Let v € P where P is label-recursive.
« If v Iis affected then
Domgp(v) N P = Domg (v)U (Domép('v) N Domép(t(P)))
* If v is unreachable then

Domg,(v) NP = Domg_(t(FP)) U Domg (v)

Computing External Dominators

Full and Partial Dominators

Consider procedures P and @

* () fully dominates P if t(Q) dominates 7(P)

*) partially dominates P if r(Q) dominates 7(P) but () does not

We can compute all full and partial dominators in O(mA) time using the
reachability algorithm

The challenge is to compute Dom(r(P)) N when Q partially dominates P

Computing External Dominators

Call Graph C = (V¢, E¢)

Ve =P, (P,Q) € Ec ifandonlyif) iscalled from P

main procedure M

r
procedure A ﬁ@A@b\ procedure B

—— e
e s o
T e Tl

Computing External Dominators

Call Graph C = (V¢, E¢)

Ve =P, (X,Y)€ Ec ifandonlyif Y iscalled from X

We can use the transitive closure C* of C tocompute Dom(r(P))NQ
when @ partially dominates P

Computing C* takes O(A\¥) time

A= |P|, w < 2.3727 matrix multiplication exponent

Perspective

» Performance of new algorithm(s) in practice?

» Theory for structured programs?

« Hecht and Uliman (1972): Structured programs (usually) have reducible
intraprocedural control-flow graphs

* Thorup (1998): Structured programs have intraprocedural control-flow graphs
with small treewidth (typically <3)

« Can we say something useful about interprocedural flowgraphs of structured
programs?

» Other program optimization problems in intraprocedural flowgraphs?

Thank You!

