Finding Dominators in Interprocedural Flowgraphs

Loukas Georgiadis University of Ioannina

Flowgraphs and Dominators

Flowgraph G = (V, E, r) : all vertices are reachable from start vertex r

v dominates w if every path from r to w includes v

Dom(w) = set of vertices that dominate w

Trivial dominators : $r, w \in Dom(w)$

idom(w) = immediate dominator of w; is dominated by all <math>Dom(w) - w

Application areas : Program optimization, VLSI testing, theoretical biology, distributed systems, constraint programming,...

Flowgraphs and Dominators

```
for (; p<stop; p++) {</pre>
  int v = order[*p];
  if (v) {
    int u;
    if (v<=i) {u=v;}
    else {
     compress(v);
      u = label[v];
    }
    if (s[u]<s[i]) s[i] = s[u];
  }
}
```


Program analysis and optimization: loop optimizations, structural analysis, control dependences,...

Flowgraphs and Dominators

Flowgraph G = (V, E, r) : all vertices are reachable from start vertex r

v dominates w if every path from r to w includes v

G

|V| = n, |E| = m

D = dominator tree of G

 $O(m\alpha(m,n))$ algorithm: [Lengauer and Tarjan '79] O(m+n) algorithms: [Alstrup, Harel, Lauridsen, and Thorup '97]

[Buchsbaum, Kaplan, Rogers, and Westbrook '04] [G., and Tarjan '04] [Buchsbaum et al. '08]

Iterative Algorithm

Dominators can be computed by solving iteratively a set of equations [Allen and Cocke, 1972]

$$Dom(v) = \left(\cap_{(u,v) \in A} Dom(u) \right) \cup \{v\}, v \neq r$$

Initialization $Dom(r) = \{r\}, Dom(v) = \emptyset, v \neq r$

Efficient implementation [Cooper, Harvey and Kennedy 2000]:

Maintain tree T; process the edges until a fixed-point is reached.

Process (u, v): compute x = nearest common ancestor of u and v in T. If x is ancestor of parent of v, make x new parent of v.

Iterative Algorithm

Dominators can be computed by solving iteratively a set of equations [Allen and Cocke, 1972]

$$Dom(v) = \left(\cap_{(u,v) \in A} Dom(u) \right) \cup \{v\}, v \neq r$$

Initialization $Dom(r) = \{r\}, Dom(v) = \emptyset, v \neq r$

Efficient implementation [Cooper, Harvey and Kennedy 2000]:

Maintain tree T; process the edges until a fixed-point is reached.

Process (u, v): compute x = nearest common ancestor of u and v in T. If x is ancestor of parent of v, make x new parent of v.

O(n) iterations, O(m) intersections per iteration, O(n) time per intersection $\Rightarrow O(mn^2)$ total running time

Purdom-Moore Algorithm

Uses *n* reachability computations $\Rightarrow O(mn)$ running time

For every $x \in V$

Compute the set U(x) of unreachable vertices from r in G-xFor every $v \in U(x)$ add x to Dom(v)

Purdom-Moore Algorithm

Uses *n* reachability computations $\Rightarrow O(mn)$ running time

For every $x \in V$

Compute the set U(x) of unreachable vertices from r in G-xFor every $v \in U(x)$ add x to Dom(v)

Depth-First Search \square DFS tree + numbering *pre*

pre(v) < pre(w): v was visited by DFS before w

Semidominator path (sdom-path) :

 $P = (v_0, v_1, v_2, ..., v_k)$ such that $pre(v_i) > pre(v_k), \ i = 1, 2, ..., k - 1$

Semidominator :

 $\operatorname{sdom}(w) = \operatorname{arg\,min} \left\{ pre(v) \mid \exists \operatorname{sdom-path\,from} v \operatorname{to} w \right\}$

G r=1a = 2b = 3c = 4

Main operation : Compute path minima on DFS tree

Main operation : Compute path minima on DFS tree

Main operation : Compute path minima on DFS tree

Uses path compression to speed up computations: link-eval data structure (based on disjoint set union)

Running time

- -Link-eval without balancing: $O(m \log n)$
- -Link-eval with balancing: $O(m\alpha(m, n))$

In practice the simple version of LT is faster and runs in linear time

G r=1a=2b=3e = 6, sdom(e) = af = 7, sdom(f) = eg = 8, sdom(g) = fc = 4d = 5sdom(d)

```
for (; p<stop; p++) {
    int v = order[*p];
    if (v) {
        int u;
        if (v<=i) {u=v;}
        else {
            compress(v);
            u = label[v];
        }
        if (s[u]<s[i]) s[i] = s[u];</pre>
```

}

}


```
for (; p<stop; p++) {</pre>
  int v = order[*p];
 if (v) {
    int u;
    if (v<=i) {u=v;}
    else {
     compress(v);
     u = label[v];
    }
    if (s[u]<s[i]) s[i] = s[u];
  }
```

}

interprocedural flowgraph G

r

D = transitive reduction of the dominance relation in G

interprocedural flowgraph $\,G\,$

D = transitive reduction of the dominance relation in G

Interprocedural flowgraph G = (V, E, r, t)

The vertex set V is partitioned into procedures $P \in \mathcal{P}$; $\mathcal{P} = \text{set of procedures}$

Each procedure $P \in \mathcal{P}$ has unique entry r(P) and exit t(P)

 $M \in \mathcal{P} =$ main procedure that contains global start r = r(M) and terminal t = t(M)

main procedure M

Interprocedural flowgraph G = (V, E, r, t)

The vertex set V is partitioned into procedures $P \in \mathcal{P}$; $\mathcal{P} =$ set of procedures

Each procedure $P \in \mathcal{P}$ has unique entry r(P) and exit t(P)

 $M \in \mathcal{P} =$ main procedure that contains global start r = r(M) and terminal t = t(M)

Call/return1-1 correspondence ϕ

A call edge (x, r(P)) has a unique corresponding return edge $\phi((x, r(P))) = (t(P), y)$

x = call node for P

y = return node for P

Interprocedural flowgraph G = (V, E, r, t)

Full path: $p = (p_1, p_2, \dots, p_k)$ such that $p_1 = r$ and $p_k = t$

Valid full path: $p = (p_1 = r, p_2, \dots, p_k = t)$ with proper nesting of call/return edges

 $r(P) \stackrel{\bullet}{\diamond}$

P

- There is a 1-1 correspondence between the occurrences of call and return edges on $\ p$
- Each occurrence of a return edge e~ on ~p~ is preceded by the corresponding occurrence of $~\phi^{-1}(e)$
- If there is an occurrence of a call edge e on p that precedes an occurrence of a call edge e' then either the corresponding occurrence of $\phi(e)$ precedes e' or the corresponding occurrence of $\phi(e')$ precedes the corresponding occurrence of $\phi(e)$

Interprocedural flowgraph G = (V, E, r, t)

Full path: $p = (p_1, p_2, \dots, p_k)$ such that $p_1 = r$ and $p_k = t$

Valid full path: $p = (p_1 = r, p_2, \dots, p_k = t)$ with proper nesting of call/return edges

Valid path: Prefix of a full valid path

procedure P

Unlike the intraprocedural case we cannot consider simple paths only

Interprocedural flowgraph G = (V, E, r, t)

Full path: $p = (p_1, p_2, \dots, p_k)$ such that $p_1 = r$ and $p_k = t$

Valid full path: $p = (p_1 = r, p_2, \dots, p_k = t)$ with proper nesting of call/return edges

Valid path: Prefix of a full valid path

Dominance: A vertex v dominates a vertex w if every valid path to w contains v

D = transitive reduction of dominance relation in G

D is a directed acyclic graph; can have $\ \Omega(n\lambda)$ arcs, where $\ \lambda = |\mathcal{P}|$

Algorithms

Reachability algorithm: O(mn) time, $O(n^2)$ space

- Reps, Horwitz and Sagiv (1995)
- Ezick, Bilardi and Pingali (2001)

Iterative algorithm: $O(mn^3)$ time, $O(n^2)$ space

• de Sutter, van Put and de Bosschere (2007)

New algorithm: $O(m\lambda + \lambda^{\omega})$ time, $O(n\lambda)$ space $\lambda = |\mathcal{P}|, \omega < 2.3727$ matrix multiplication exponent

All the above support the following queries:

- Return the dominators of a query vertex v in O(|Dom(v)|) time
- Given query vertices v and w test if v dominates w in O(1) time

Context-Sensitive Reachability

Context-Sensitive Depth-First Search (CSDFS) [de Sutter, van Put and de Bosschere, TOPLAS 2007]

Traverse a return edge e only if $\phi^{-1}(e)$ has already been processed

main procedure M

Context-Sensitive Reachability

Context-Sensitive Depth-First Search (CSDFS) [de Sutter, van Put and de Bosschere, TOPLAS 2007]

Traverse a return edge e only if $\phi^{-1}(e)$ has already been processed Running time = O(m)

main procedure M

Interprocedural flowgraph G = (V, E, r, t)

Full path: $p = (p_1, p_2, \dots, p_k)$ such that $p_1 = r$ and $p_k = t$

Valid full path: $p = (p_1 = r, p_2, \dots, p_k = t)$ with proper nesting of call/return edges

Valid path: Prefix of a full valid path

Dominance: A vertex v dominates a vertex w if every valid path to w contains v

Valid subpath: Suffix of a valid path

Matched subpath: Valid subpath that has no unmatched occurrence of a call or a return edge

Overview of the new algorithm

Let v be a vertex in procedure P

Internal Dominators

IntDom(v) = vertices included in all matched subpaths from r(P) to v

External Dominators

ExtDom(v) = vertices included in all valid paths from r to r(P)

It can be $IntDom(v) \cap ExtDom(v) \neq \emptyset$

We have $Dom(v) = IntDom(v) \cup ExtDom(v)$

 $P \begin{bmatrix} r(P) & & \\ v & & \\ v & & \\ t(P) &$

r

Internal Post-Dominators

Consider procedures P and Q

Q is an internal post-dominator of P if every matched subpath from r(P) to t(P) contains r(Q)

Lemma

We can compute all internal post-dominators of all procedures in $O(m\lambda)$ time

Form a new graph G' from G with new start r'and edges (r', r(P)) for all $P \in \mathcal{P}$

Q is an internal post-dominator of P if and only if t(P) is unreachable in $G^\prime - r(Q)$

Reduced flowgraphs

Graph $G_P = (V_P, E_P, r(P), t(P))$ for procedure P

 $V_P = P \cup S$ where S = special vertices, one for each procedure called from P

Reduced flowgraphs

Graph $G_P = (V_P, E_P, r(P), t(P))$ for procedure P

 $V_P = P \cup S$ where S = special vertices, one for each procedure called from PEach special vertex Q is assigned a set of labels $L(Q) \subseteq \mathcal{P}$ $W \in L(Q)$ if and only if W is an internal post-dominator of Q

Label-recursive procedure P

 G_P contains a special vertex Q such that $P \in L(Q)$

Labels of vertex $v \in P$

Labels(v) = set of labels that appear on every valid path from r(P) to vWe can compute all vertex labels in $O(m\lambda)$ time and $O(n\lambda)$ space

Reduced flowgraphs

Graph $G_P = (V_P, E_P, r(P), t(P))$ for procedure P

 $V_P = P \cup S_P$, $S_P =$ special vertices, one for each procedure called from P

Auxiliary flowgraphs

Graph $\hat{G}_P = (\hat{V}_P, \hat{E}_P, r(P), t(P))$ is formed from G_P as follows We remove all special vertices and their incident edges For each call edge e = (x, Q) and corresponding return edge $\phi(e) = (Q, y)$ in G_P we add (x,y) in \hat{E}_P b $\supset d \implies$ \hat{G}_P G_P

Reduced flowgraphs

Graph $G_P = (V_P, E_P, r(P), t(P))$ for procedure P

 $V_P = P \cup S_P$, $S_P =$ special vertices, one for each procedure called from P

Auxiliary flowgraphs

Graph $\hat{G}_P = (\hat{V}_P, \hat{E}_P, r(P), t(P))$ is formed from G_P as follows We remove all special vertices and their incident edges For each call edge e = (x, Q) and corresponding return edge $\phi(e) = (Q, y)$ in G_P we add (x, y) in \hat{E}_P

Graph $\tilde{G}_P = (\tilde{V}_P, \tilde{E}_P, r(P), t(P))$ is formed from \hat{G}_P as follows For each call edge e = (x, Q) and corresponding return edge $\phi(e) = (Q, y)$ in G_P such that $P \in L(Q)$ we remove (x, y) from \tilde{E}_P

Non label-recursive procedure

Let $v \in P$ and $w \in Q$, where P is not label-recursive. Then $w \in IntDom(v)$ if and only if either

(a) P = Q and $w \in Dom_{\hat{G}_P}(v)$, or

(b) $P \neq Q$, $Q \in Labels(v)$ and $w \in Dom_{G_Q}(t(Q)) \cap Q$

Label-recursive procedure

Let P be a label-recursive procedure. Then

 $Dom_{G_P}(t(P)) \cap P = Dom_{\tilde{G}_P}(t(P))$

Status of a vertex $v \in \tilde{G}_P$

- unreachable if there is no r(P)-v path in G_P
- affected if it is not unreachable but $Dom_{\hat{G}_P}(v) \neq Dom_{\tilde{G}_P}(v)$
- unaffected if $Dom_{\hat{G}_P}(v) = Dom_{\tilde{G}_P}(v)$

Label-recursive procedure

- Let $v \in P$ where P is label-recursive.
- If v is affected then

 $Dom_{G_P}(v) \cap P = Dom_{\hat{G}_P}(v) \cup \left(Dom_{\tilde{G}_P}(v) \cap Dom_{\tilde{G}_P}(t(P))\right)$

• If v is unreachable then

 $Dom_{G_P}(v) \cap P = Dom_{\tilde{G}_P}(t(P)) \cup Dom_{\hat{G}_P}(v)$

Full and Partial Dominators

Consider procedures P and Q

- Q fully dominates P if t(Q) dominates r(P)
- Q partially dominates P if r(Q) dominates r(P) but t(Q) does not

We can compute all full and partial dominators in $O(m\lambda)$ time using the reachability algorithm

The challenge is to compute $Dom(r(P)) \cap Q$ when Q partially dominates P

Call Graph $C = (V_C, E_C)$ $V_C = P, \quad (P, Q) \in E_C$ if and only if Q is called from P

Call Graph $C = (V_C, E_C)$ $V_C = P, (X, Y) \in E_C$ if and only if Y is called from X

We can use the transitive closure C^* of C to compute $Dom(r(P)) \cap Q$ when Q partially dominates P

Computing C^* takes $O(\lambda^{\omega})$ time $\lambda = |\mathcal{P}|, \ \omega < 2.3727$ matrix multiplication exponent

Perspective

Performance of new algorithm(s) in practice?

Theory for structured programs?

 Hecht and Ullman (1972): Structured programs (usually) have reducible intraprocedural control-flow graphs

- Thorup (1998): Structured programs have intraprocedural control-flow graphs with small treewidth (typically <3)
- Can we say something useful about interprocedural flowgraphs of structured programs?
- Other program optimization problems in intraprocedural flowgraphs?

Thank You!