Computing the volume of the discriminant polytope

Vissarion Fisikopoulos

Joint work with I.Z. Emiris (UoA), B. Gärtner (ETHZ)

Department of Informatics, University of Athens

ACAC, 28.Aug.2012

Discriminants in high school

Example

$$f(x) = ax^2 + bx + c = 0$$

 $f'(x) = 2ax + b = 0$ $\Delta = b^2 - 4ac$

 $ightharpoonup \Delta$ vanishes iff f has a multiple root

Another example

A degree 5 polynomial on one variable

$$f(x) = ax^5 + bx^4 + cx^3 + dx^2 + ex + g = 0$$

$$f'(x) = 5ax^4 + 4bx^3 + 3cx^2 + 2dx + e = 0$$

▶ Elimination theory reduces the computation of Δ to the computation of a 9 × 9 determinant.

$$\begin{array}{lll} \Delta = -2050a^2g^2bedc + 356abed^2c^2g - 80b^3ed^2cg + 18dc^3b^2g \\ e - 746agdcb^2e^2 + 144ab^2e^4c - 6ab^2e^3d^2 - 192a^2be^4d - 4d^2ac \\ 3e^2 + 144d^2a^2ca^3 - 4d^3b^3e^2 - 4c^3e^3b^2 - 80abe^3dc^2 + 18b^3e^3 \\ dc + 18d^3acbe^2 + d^2c^2b^2e^2 - 27b^4e^4 - 128a^2e^4c^2 + 16ac^4e^3 - 27 \\ a^2d^4e^2 + 256a^3e^5 + 3125a^4g^4 + 160a^2gb^2c + 560a^2gdc^2e^2 + 1020 \\ a^2gbd^2e^2 + 160ag^2b^3ed + 560ag^2d^2cb^2 + 1020ag^2b^2c^2e - 192 \\ b^4ecg^2 + 24ab^2e^3g^2 + 24abe^2c^3g + 144b^4e^2dg - 6b^3e^2c^2g + 114 \\ dc^2b^3g^2 - 630dac^3bg^2 - 630da^3a^2ceg - 72d^4acbg - 72dac^4e \\ g - 4d^3c^2b^2g - 1600ag^3cb^3 - 2500a^3g^3be - 50a^2g^2b^2e^2 - 3750a^3g^3dc + 2000a^2g^3b^2c^2 + 825a^2g^2d^2c^2 + 2250a^2g^3b \\ c^2 + 2250a^3g^2ed^2 - 900a^2g^2b^3 - 900a^2g^2c^2e - 36agb^3e^3 - 1600 \\ a^3ge^3d + 16a^3ac^3g - 138d^2b^2g^2 + 16d^4b^3g - 27c^4b^2g^2 + 108ac^5g^2 + 108a^2d^5g + 256b^5g^3 \end{array}$$

▶ The number of Δ terms increases exponentially with the degree!

One more example

► A system of two polynomials on two variables

$$f_1 = ax_1^2 + bx_1x_2 + cx_2^2 + dx_1 + ex_2 + g$$

$$f_2 = hx_1^2 + ix_1x_2 + jx_2^2 + kx_1 + lx_2 + m$$

▶ The condition of the two quadrics f_1 , f_2 to be tangent is expressed by the Δ of

$$f = ax_1^2x_3 + bx_1x_2x_3 + cx_2^2x_3 + dx_1x_3 + ex_2x_3 + gx_3 + hx_1^2x_4 + ix_1x_2x_4 + jx_2^2x_4 + kx_1x_4 + lx_2x_4 + mx_4$$

 $ightharpoonup \Delta$ is of degree 12 and has 3210 monomials!

One more example

A system of two polynomials on two variables

$$f_1 = ax_1^2 + bx_1x_2 + cx_2^2 + dx_1 + ex_2 + g$$

$$f_2 = hx_1^2 + ix_1x_2 + jx_2^2 + kx_1 + lx_2 + m$$

▶ The condition of the two quadrics f_1, f_2 to be tangent is expressed by the Δ of

$$f = ax_1^2x_3 + bx_1x_2x_3 + cx_2^2x_3 + dx_1x_3 + ex_2x_3 + gx_3 + hx_1^2x_4 + ix_1x_2x_4 + jx_2^2x_4 + kx_1x_4 + lx_2x_4 + mx_4$$

 $ightharpoonup \Delta$ is of degree 12 and has 3210 monomials!

Instrumental in dark matter searches at the CERN Large Hadron Collider

What is the discriminant?

Definition

Given
$$f(x) = \sum_{a \in A} c_a x^a$$
, where $A \subset \mathbb{Z}^d$, $x = (x_1, \dots, x_d) \in (\mathbb{C}^*)^d$.

The discriminant is the unique (up to sign) irreducible polynomial Δ with integer coefficients in the unknowns c_a which vanishes iff f has a multiple root, i.e.,

$$\Delta = 0 \quad \Leftrightarrow \quad \exists x^* \in (\mathbb{C}^*)^d \quad \text{s.t.} \quad f(x^*) = \frac{\partial f}{\partial x_1}(x^*) = \dots = \frac{\partial f}{\partial x_d}(x^*) = 0$$

What is the discriminant polytope?

Definition

- ▶ The Newton polytope of f, N(f), is the convex hull of the set of exponents of its monomials with non-zero coefficient.
- ▶ The discriminant polytope is $N(\Delta)$.

What is the discriminant polytope?

Definition

- ▶ The Newton polytope of f, N(f), is the convex hull of the set of exponents of its monomials with non-zero coefficient.
- ▶ The discriminant polytope is $N(\Delta)$.

Example

$$\begin{split} f(x_1,x_2) &= 8x_2 + x_1x_2 - 24x_2^2 - 16x_1^2 + \\ 220x_1^2x_2 - 34x_1x_2^2 - 84x_1^3x_2 + 6x_1^2x_2^2 - \\ 8x_1x_2^3 + 8x_1^3x_2^2 + 8x_1^3 + 18x_2^3 \end{split}$$

What is the discriminant polytope?

Definition

- ▶ The Newton polytope of f, N(f), is the convex hull of the set of exponents of its monomials with non-zero coefficient.
- ▶ The discriminant polytope is $N(\Delta)$.

Example

$$f(x_1, x_2) = \frac{8x_2 + x_1x_2 - 24x_2^2 - \frac{16x_1^2 + x_2^2}{220x_1^2x_2 - 34x_1x_2^2 - 84x_1^3x_2 + 6x_1^2x_2^2 - 8x_1x_2^3 + 8x_1^3x_2^2 + 8x_1^3 + 18x_2^3}$$

- ▶ We consider d fixed and d > 4. If n := |A|, $dim(N(\Delta)) = n d + 1$.
- ▶ Knowing $N(\Delta)$, reduces the computation of Δ to a linear algebra problem!

Discriminant polytope: Motivation

- ▶ Geometry: equival. classes of the polytope of all triangulations
- ▶ Algebra: generalizes the notion of degree of the discriminant
- Applications: discriminant computation, CAD: implicitization of parametric hypersurfaces

Enneper's Minimal Surface

Existing work

- ► Theory of resultant and discriminant polytopes [GelfandKapranovZelevinsky'94]
- ► TOPCOM [Rambau '02] computes all vertices of the polytope of all triangulations.
- ► [Emiris, F, Konaxis, Peñaranda SoCG'12] algorithm for computing resultant polytopes (respo1) (extended by [Emiris, F, Dickenstein] to discriminant polytopes).
- ▶ Complexity of computing $N(\Delta)$ dominated by convex hull ([Chazelle'91]) $O(|V|^{\lfloor n/2 \rfloor})$, $V = \{\text{vertices of } N(\Delta)\}$.
- ► Tropical geometry [Sturmfels-Yu '08]: algorithms for resultant polytope (GFan) [Jensen-Yu '11] and discriminant polytope vertices (TropLi) [Rincón'12].

Polytope oracles

OPT oracle [EFKP'12]

Given $c \in \mathbb{R}^n$, find $y \in N(\Delta) \in \mathbb{R}^n$: maximize $c^T y$, or assert that $N(\Delta)$ is empty.

Complexity: dominated by convex hull $O(n^{\lfloor d/2 \rfloor})$

VIOL oracle

Given $c \in \mathbb{R}^n$, $\gamma \in \mathbb{R}$, does $c^T x \leq \gamma$ holds $\forall x \in N(\Delta)$? If not, find $y \in N(\Delta)$ with $c^T y > \gamma$.

Polytope duality

 $\blacktriangleright \ \ \textit{N}(\Delta)^* := \{(z^T, \lambda)^T \in \mathbb{R}^{n+1} \ : \ z^T x \leq \lambda \ \text{for all} \ x \in \textit{N}(\Delta)\}$

$$\blacktriangleright \ \ N(\Delta)^{**} = N(\Delta)$$

Polytope oracles and duality

VIOL oracle

Given $c \in \mathbb{R}^n$, $\gamma \in \mathbb{R}$, does $c^T x \leq \gamma$ holds $\forall x \in N(\Delta)$. If not, find $y \in N(\Delta)$ with $c^T y > \gamma$.

SEP oracle

Given $y \in \mathbb{R}^n$, does $y \in \mathcal{N}(\Delta)^*$? If not, find $c \in \mathbb{R}^n$ s.t. $c^T y > \max\{c^T x \mid x \in P\}$.

Optimization from Separation

polynomial time optimization algorithms

- Ellipsoid [GrötschelLovászSchrijver'88]
- ► Vaidya's [Vaidya'89].
- ► Centralized Splitting [Levin'65]
- ► random walk [BertsimasVempala'04]

Optimization from Separation

polynomial time optimization algorithms

- ► Ellipsoid [GrötschelLovászSchrijver'88]
- ► Vaidya's [Vaidya'89].
- Centralized Splitting [Levin'65]
- ► random walk [BertsimasVempala'04]

$$\textit{N}(\Delta)^{**} = \textit{N}(\Delta)$$

The volume problem

- ► Convex polytope $Q \subseteq \mathbb{R}^n$, computing volume is #P hard
- ▶ Given separation oracle for Q, \exists randomized algorithm s.t. approximate Q volume (arbitrary accuracy) in $O^*(n^4)$ [LovászVempala'06].
- ► The implementation by [Lovász et al.'04] run only with hypercubes in dimension < 10.

The volume of $N(\Delta)$

Theorem

Given a polynomial with d variables and n monomials we can compute an approximation of the volume of $N(\Delta)$ in $O^*(n^{\lfloor 2(d+3)\rfloor}L)$.

(where $L = log \frac{R}{r}$ and $N(\Delta)$ is contained in an axis-aligned cube of width R and contains a cube of width r)

Works for every polytope defined by an optimization oracle s.a. secondary, resultant polytopes . . .

Ongoing and future work

▶ Implement the volume computation algorithm for $N(\Delta)$

▶ Approximation of $N(\Delta)$

Ongoing and future work

▶ Implement the volume computation algorithm for $N(\Delta)$

▶ Approximation of $N(\Delta)$

Thank You!