Computation of Nash Equilibria in Bimatrix Games

7th Athens Colloquium on Algorithms and Complexity (ACAC 2012) University of Athens, 27-28 August 2012

Spyros Kontogiannis

kontog@cs.uoi.gr

Computer Science Department
University of loannina

Computer Technology Institute
\& Press "Diophantus"

Monday, August 272012

Skeleton of the Talk

(1) Bimatrx Games Preliminaries

- Complexity of 2NASH
- Formulations for 2NASH
- The algorithm of Lemke \& Howson

Polynomial-time Tractable Subclasses

Approximability of 2NASH

- Theoretical Analysis
- Experimental Study

Bimatrix Games: Representation

- 2 players: the ROW player and the column player.
- $m(n)$ alternative actions for ROW (col) player.

Bimatrix Games: Representation

- 2 players: the ROW player and the column player.
- $m(n)$ alternative actions for ROW (col) player.
- $\Gamma[k, j]=\left(R_{k, j}, C_{k j}\right)$: The pair of payoffs for the two players, for a given pair (profile) of actions $(k, j) \in[m] \times[n]$.

Bimatrix Games: Representation

- 2 players: the ROW player and the column player.
- $m(n)$ alternative actions for ROW (col) player.
- $\Gamma[k, j]=\left(R_{k j}, C_{k j}\right)$: The pair of payoffs for the two players, for a given pair (profile) of actions $(k, j) \in[m] \times[n]$.
- Representation: By the $m \times n$ bimatrix of normalized payoffs:

$$
\Gamma=\left\langle R \in[0,1]^{m \times n}, \quad C \in[0,1]^{m \times n}\right\rangle
$$

	1	-00	j	-00	n
1	*,*	*,*	*,*	*,*	*,*
\%	*,*	*,*	*,*	*,*	*,*
k	*,*	*,*	$R_{\text {kj, }}, c_{k j}$	*,*	*,*
:	*,*	*,*	*,*	*,*	*,*
m	*,*	*,*	*,*	*,*	*,*

Bimatrix Games: Representation

- 2 players: the ROW player and the column player.
- $m(n)$ alternative actions for ROW (col) player.
- $\Gamma[k, j]=\left(R_{k, j}, C_{k j}\right)$: The pair of payoffs for the two players, for a given pair (profile) of actions $(k, j) \in[m] \times[n]$.
- Representation: By the $m \times n$ bimatrix of normalized payoffs:

$$
\Gamma=\left\langle R \in[0,1]^{m \times n}, \quad C \in[0,1]^{m \times n}\right\rangle
$$

- Size of representation: $O(m \times n)$ rational numbers.

Uncorrelated Strategies (for the players)

Uncorrelated Strategies (for the players)

- Each player chooses a (mixed / pure) strategy (probability distribution over) her action set.

Uncorrelated Strategies (for the players)

- Each player chooses a (mixed / pure) strategy (probability distribution over) her action set.

Uncorrelated Strategies (for the players)

- Each player chooses a (mixed / pure) strategy (probability distribution over) her action set.
- The adopted action per player is determined randomly and independently of other players' behavior and her final choices of actions, according to her
 announced strategy.

Uncorrelated Strategies (for the players)

- Each player chooses a (mixed / pure) strategy (probability distribution over) her action set.
- The adopted action per player is determined randomly and independently of other players' behavior and her final choices of actions, according to her
 announced strategy.
- Each player is interested in optimizing the expected value of her own payoff, as a function of the announced strategies profile for both players (\mathbf{x}, \mathbf{y}) :
- ROW player: $\mathbf{x}^{T} R \mathbf{y}=\sum_{i \in[m]} \sum_{j \in[n]} x_{i} \cdot R_{i, j} \cdot y_{j}$.
- column player: $\mathbf{x}^{T} C \mathbf{y}=\sum_{i \in[m]} \sum_{j \in[n]} x_{i} \cdot C_{i, j} \cdot y_{j}$.

Correlated Strategies (for the mediator)

- The players are allowed to coordinate their choices of actions, via a credible coordinating device, the mediator.

Correlated Strategies (for the mediator)

- The players are allowed to coordinate their choices of actions, via a credible coordinating device, the mediator.
- The mediator chooses an action profile for both players, $(k, j) \in[m] \times[n]$, according to a correlated strategy, ie, a probability distribution over the entire set of action profiles: $\mathbf{W} \in \Delta_{m \times n}$.

Correlated Strategies (for the mediator)

- The players are allowed to coordinate their choices of actions, via a credible coordinating device, the mediator.
- The mediator chooses an action profile for both players, $(k, j) \in[m] \times[n]$, according to a correlated strategy, ie, a probability distribution over the entire set of action profiles: $\mathbf{W} \in \Delta_{m \times n}$.

- The mediator recommends via private channels the corresponding action per player in the chosen profile, without revealing it to the opponent. Each player freely chooses an action, already knowing mediator's recommendation to her.

Correlated Strategies (for the mediator)

- The players are allowed to coordinate their choices of actions, via a credible coordinating device, the mediator.
- The mediator chooses an action profile for both players, $(k, j) \in[m] \times[n]$, according to a correlated strategy, ie, a probability distribution over the entire set of action profiles: $\mathbf{W} \in \Delta_{m \times n}$.

- The mediator recommends via private channels the corresponding action per player in the chosen profile, without revealing it to the opponent. Each player freely chooses an action, already knowing mediator's recommendation to her.
- The expected value of the payoff to each player, for a correlated strategy \mathbf{W} of the mediator, is:

Uncorrelated vs Correlated Strategies

- Any uncorrelated strategies-profile $(\mathbf{x}, \mathbf{y}) \in \Delta([m]) \times \Delta([n])$ for the players, induces an equivalent correloted strategy (wrt to expected payoffs) for the mediator $\mathbf{W}=\mathbf{x} \cdot \mathbf{y}^{T} \in \Delta([m] \times[n])$.

Uncorrelated vs Correlated Strategies

- Any uncorrelated strategies-profile $(\mathbf{x}, \mathbf{y}) \in \Delta([m]) \times \Delta([n])$ for the players, induces an equivalent correlated strategy (wrt to expected payoffs) for the mediator $\mathbf{W}=\mathbf{x} \cdot \mathbf{y}^{T} \in \Delta([m] \times[n])$.
- Some correlated strategies cannot be decomposed into equivalent uncorrelated strategies profiles for the players. Eg, in the following (chicken) game, the correlated strategy $[(C, c): 1 / 3,(C, d): 1 / 3,(D, c): 1 / 3,(D, d): 0]$ is not decomposable into a pair of independent strategies for the players:

Popular Solution Concepts (I)

DEFINITION: Approximations of Nash Equilibrium
For a normalized bimatrix game $\langle R, C\rangle$, an uncorrelated strategies profile ($\overline{\mathbf{x}}, \overline{\mathbf{y}}$) is:

Popular Solution Concepts (I)

DEFINITION: Approximations of Nash Equilibrium
For a normolized bimatrix game $\langle R, C\rangle$, an uncorrelated strategies profile ($\overline{\mathrm{x}}, \overline{\mathrm{y}}$) is:

- ε-approximate Nash equilibrium (ε-NE) iff no player can improve her expected payoff more than an additive term of $\varepsilon \geq 0$, by changing unilaterally her strategy, against the given strategy of the opponent: $\forall x \in \Delta([m]), \forall \mathbf{y} \in \Delta([n])$,

$$
\overline{\mathbf{x}}^{T} R \overline{\mathbf{y}} \geq \mathbf{x}^{T} R \overline{\mathbf{y}}-\varepsilon \wedge \overline{\mathbf{x}}^{T} C \overline{\mathbf{y}} \geq \overline{\mathbf{x}}^{T} C \mathbf{y}-\varepsilon
$$

Popular Solution Concepts (I)

DEFINITION: Approximations of Nash Equilibrium For a normolized bimatrix game $\langle R, C\rangle$, an uncorrelated strategies profile ($\overline{\mathrm{x}}, \overline{\mathrm{y}}$) is:

- ε-approximate Nash equilibrium (ε-NE) iff no player can improve her expected payoff more than an additive term of $\varepsilon \geq 0$, by changing unilaterally her strategy, against the given strategy of the opponent: $\forall x \in \Delta([m]), \forall \mathbf{y} \in \Delta([n])$,

$$
\overline{\mathbf{x}}^{T} R \overline{\mathbf{y}} \geq \mathbf{x}^{T} R \overline{\mathbf{y}}-\varepsilon \wedge \overline{\mathbf{x}}^{T} C \overline{\mathbf{y}} \geq \overline{\mathbf{x}}^{T} C \mathbf{y}-\varepsilon
$$

- ε-well-supported approximate Nash equilibrium (ε-WSNE) iff no player assigns positive probability mass to any of her actions whose expected payoff against the given strategy of the opponent is less than an additive term $\varepsilon \geq 0$ from the maximum expected payoff: $\forall i \in[m], \forall j \in[n]$,

$$
\left[\bar{x}_{i}>0 \rightarrow \mathbf{e}_{\mathrm{i}}^{T} R \overline{\mathbf{y}} \geq \max (R \overline{\mathbf{y}})-\varepsilon\right] \wedge\left[\bar{y}_{j}>0 \rightarrow \overline{\mathbf{x}}^{T} C \mathbf{e}_{\mathbf{j}} \geq \max \left(\overline{\mathbf{x}}^{T} C\right)-\varepsilon\right]
$$

Some Comments on Nash Equilibria

(1) We focus on normalized games, so as to be able to compare different algorithms wrt the quality of approximation they achieve.

Some Comments on Nash Equilibria

(1) We focus on normolized games, so as to be able to compare different algorithms wrt the quality of approximation they achieve.
(2) Any ε-WSNE is also a ε-NE, but the inverse is not necessarily true.

Some Comments on Nash Equilibria

(1) We focus on normalized games, so as to be able to compare different algorithms wrt the quality of approximation they achieve.
(2) Any ε-WSNE is also a ε-NE, but the inverse is not necessarily true.
(3) For $\varepsilon=0, \varepsilon$-NE $\leftrightarrow \varepsilon$-WSNE: These are (exact) Nash equilibria, where each player assigns all her probability mass to actions that are payoff maximizers (best responses) against the given strategy of the opponent.

Some Comments on Nash Equilibria

(1) We focus on normalized games, so as to be able to compare different algorithms wrt the quality of approximation they achieve.
(2) Any ε-WSNE is also a ε-NE, but the inverse is not necessarily true.

3 For $\varepsilon=0, \varepsilon$-NE $\leftrightarrow \varepsilon$-WSNE: These are (exact) Nash equilibria, where each player assigns all her probability mass to actions that are payoff maximizers (best responses) against the given strategy of the opponent.
4. Approximate Nash equilibria are invariant under shifts but are affected by scalings of the payoff matrices. Exact Nash equilibria are also invariant under positive scalings.

Popular Solution Concepts (II)

DEFINITION: Correlated Equilibrium

A correlated strategy $\overline{\mathbf{W}} \in \Delta([m] \times[n])$ (for the mediator) is a correlated equilibrium iff no player can improve her expected payoff by unilaterally ignoring the recommendation of the mediator, given that the opponent will adopt her own recommendation by the mediator: $\forall i, k \in[m], \forall j, \ell \in[n]$,

$$
\sum_{j \in[n]}\left(R_{i j}-R_{k j}\right) \bar{W}_{i j} \geq 0 \text { and } \sum_{i \in[m]}\left(C_{i, j}-C_{i, \ell}\right) \bar{W}_{i j} \geq 0
$$

Popular Solution Concepts (II)

DEFINITION: Correlated Equilibrium
A correlated strategy $\overline{\mathbf{W}} \in \Delta([m] \times[n])$ (for the mediator) is a correlated equilibrium iff no player can improve her expected payoff by unilaterally ignoring the recommendation of the mediator, given that the opponent will adopt her own recommendation by the mediator: $\forall i, k \in[m], \forall j, \ell \in[n]$,

$$
\sum_{j \in[n]}\left(R_{i j}-R_{k j}\right) \bar{W}_{i j} \geq 0 \text { and } \sum_{i \in[m]}\left(C_{i j}-C_{i, \ell}\right) \bar{W}_{i j} \geq 0
$$

Remarks:
© The space of correlated equilibria is a polytope!!!
2 The existence of a mediator, although helpful in having the players' actions coordinated, raises serious concerns wrt implementation, such as trust, manipulability, objectivity, etc.

Popular Solution Concepts (III)

DEFINITION: MAXMIN Strategies
A profile of (uncorrelated) strategies ($\overline{\mathbf{x}}, \overline{\mathbf{y}}$) is MAXMIN profile iff: $\overline{\mathbf{x}} \in \arg \max _{\mathbf{x} \in \Delta([m])} \min _{\mathbf{y} \in \Delta([n])} \mathbf{x}^{T} R \mathbf{y}=\arg _{\max }^{\mathbf{x} \in \Delta([m])} \min _{j \in[n]} \mathbf{x}^{T} R \mathbf{e}_{\mathbf{j}}$
$\overline{\mathbf{y}} \in \arg \max _{\mathbf{y} \in \Delta([n])} \min _{\mathbf{x} \in \Delta([m])} \mathbf{x}^{T} C \mathbf{y}=\arg \max _{\mathbf{y} \in \Delta([n])} \min _{i \in[m]} \mathbf{e}_{\mathbf{i}}^{T} C \mathbf{y}$

Popular Solution Concepts (III)

DEFINITION: MAXMIN Strategies
A profile of (uncorrelated) strategies ($\overline{\mathbf{x}}, \overline{\mathbf{y}}$) is MAXMIN profile iff:
$\overline{\mathbf{x}} \in \arg \max _{\mathbf{x} \in \Delta([m])} \min _{\mathbf{y} \in \Delta([n])} \mathbf{x}^{T} R \mathbf{y}=\arg \max _{\mathbf{x} \in \Delta([m])} \min _{j \in[n]} \mathbf{x}^{T} R \mathbf{e}_{\mathbf{j}}$
$\overline{\mathbf{y}} \in \arg \max _{\mathbf{y} \in \Delta([n])} \min _{\mathbf{x} \in \Delta([m])} \mathbf{x}^{T} C \mathbf{y}=\arg \max _{\mathbf{y} \in \Delta([n])} \min _{i \in[m]} \mathbf{e}_{\mathbf{i}}^{T} C \mathbf{y}$

Remarks:
© Efficiently computable via Linear Programming.
(2) Extremely pessimistic predictions: It is possible that a MAXMIN profile is "too far" from any notion of approximate equilibrium (not only as points, but also wrt the approximation guarantee).

AN EXAMPLE: Chicken Game

	col	
	dare	chicken
	0,0	7,2
	0,	
	2,7	6,6

AN EXAMPLE: Chicken Game

- Two pure Nash equilibria: (D, c) and (C, d).

AN EXAMPLE: Chicken Game

- Two pure Nash equilibria: (D, c) and (C, d).
- An additional mixed Nash equilibrium:
$\left(\left[D: \frac{1}{3}, C: \frac{2}{3}\right],\left[d: \frac{1}{3}, c: \frac{2}{3}\right]\right)$.
Expected payoff per player: $0 \cdot \frac{1}{9}+2 \cdot \frac{2}{9}+7 \cdot \frac{2}{9}+6 \cdot \frac{4}{9}=\frac{14}{3}$.

AN EXAMPLE: Chicken Game

- Two pure Nash equilibria: (D, c) and (C, d).
- An additional mixed Nash equilibrium:
$\left(\left[D: \frac{1}{3}, C: \frac{2}{3}\right],\left[d: \frac{1}{3}, c: \frac{2}{3}\right]\right)$.
Expected payoff per player: $0 \cdot \frac{1}{9}+2 \cdot \frac{2}{9}+7 \cdot \frac{2}{9}+6 \cdot \frac{4}{9}=\frac{14}{3}$.
- One more (extreme) (which are the others?) correlated equilibrium, external to the set $\operatorname{conv}(N E(R, C))$:

$$
\left[(D, d): 0,(D, c): \frac{1}{3},(C, d): \frac{1}{3},(C, c): \frac{1}{3}\right]
$$

Expected payoff per player: $2 \cdot \frac{1}{3}+7 \cdot \frac{1}{3}+6 \cdot \frac{1}{3}=5$.

AN EXAMPLE: Chicken Game

- Two pure Nash equilibria: (D, c) and (C, d).
- An additional mixed Nash equilibrium:
$\left(\left[D: \frac{1}{3}, C: \frac{2}{3}\right],\left[d: \frac{1}{3}, c: \frac{2}{3}\right]\right)$.
Expected payoff per player: $0 \cdot \frac{1}{9}+2 \cdot \frac{2}{9}+7 \cdot \frac{2}{9}+6 \cdot \frac{4}{9}=\frac{14}{3}$.
- One more (extreme) (which are the others?) correlated equilibrium, external to the set $\operatorname{conv}(\operatorname{NE}(R, C))$:

$$
\left[(D, d): 0,(D, c): \frac{1}{3},(C, d): \frac{1}{3},(C, c): \frac{1}{3}\right]
$$

Expected payoff per player: $2 \cdot \frac{1}{3}+7 \cdot \frac{1}{3}+6 \cdot \frac{1}{3}=5$.

- MAXMIN profile?

AN EXAMPLE: Chicken Game

- Two pure Nash equilibria: (D, c) and (C, d).
- An additional mixed Nash equilibrium:
$\left(\left[D: \frac{1}{3}, C: \frac{2}{3}\right],\left[d: \frac{1}{3}, c: \frac{2}{3}\right]\right)$.
Expected payoff per player: $0 \cdot \frac{1}{9}+2 \cdot \frac{2}{9}+7 \cdot \frac{2}{9}+6 \cdot \frac{4}{9}=\frac{14}{3}$.
- One more (extreme) (which are the others?) correlated equilibrium, external to the set $\operatorname{conv}(N E(R, C))$:

$$
\left[(D, d): 0,(D, c): \frac{1}{3},(C, d): \frac{1}{3},(C, c): \frac{1}{3}\right]
$$

Expected payoff per player: $2 \cdot \frac{1}{3}+7 \cdot \frac{1}{3}+6 \cdot \frac{1}{3}=5$.

- MAXMIN profile? (C, c) with payoff 6 per player.

Complexity of Equilibria

Hardness of Computing Equilibria

- How hard is to compute an equilibrium in a bimatrix game?

Hardness of Computing Equilibria

- How hard is to compute an equilibrium in a bimatrix game?
- Correlated equilbria: Their space is a polytope described by a polynomial number of constraints.

$$
C E(R, C)=\left\{\begin{aligned}
\overline{\mathbf{W}} & \in \Delta([m] \times[n]): \\
& \forall i, k \in[m], \quad \sum_{j \in[n}\left(R_{i j}-R_{k j}\right) \bar{W}_{i j} \geq 0 \\
& \forall j, \ell \in[n], \quad \sum_{i \in[m]}\left(C_{i j}-C_{i, l}\right) \bar{W}_{i j} \geq 0
\end{aligned}\right\}
$$

Hardness of Computing Equilibria

- How hard is to compute an equilibrium in a bimatrix game?
- Correlated equilbria: Their space is a polytope described by a polynomial number of constraints.

$$
C E(R, C)=\left\{\begin{aligned}
& \overline{\mathbf{W}} \in \Delta([m] \times[n]): \\
& \forall i, k \in[m], \quad \sum_{j \in[n]}\left(R_{i j}-R_{k, j}\right) \bar{W}_{i j} \geq 0 \\
& \forall j, \ell \in[n], \quad \sum_{i \in[m]}\left(C_{i j}-C_{i, \ell}\right) \bar{W}_{i j} \geq 0
\end{aligned}\right\}
$$

- MAXMIN profiles: Again polynomial-time solvable, via Linear Programming.

$$
\operatorname{MAXMIN}(R, C)=\left\{(\overline{\mathbf{x}}, \overline{\mathbf{y}}): \begin{array}{l}
\overline{\mathbf{x}} \in \arg \max _{\mathbf{x} \in \Delta([m])} \min _{j \in[n]} \mathbf{x}^{T} R \mathbf{e}_{\mathbf{j}} \\
\overline{\mathbf{y}} \in \arg \max _{\mathbf{y} \in \Delta([n])} \min _{i \in[m]} \mathbf{e}_{\mathbf{i}}^{T} C \mathbf{y}
\end{array}\right\}
$$

Hardness of Computing Equilibria

- How hard is to compute an equilibrium in a bimatrix game?
- Correlated equilbria: Their space is a polytope described by a polynomial number of constraints.

$$
C E(R, C)=\left\{\begin{aligned}
& \overline{\mathbf{W}} \in \Delta([m] \times[n]): \\
& \forall i, k \in[m], \quad \sum_{j \in[n]}\left(R_{i j}-R_{k, j}\right) \bar{W}_{i j} \geq 0 \\
& \forall j, \ell \in[n], \quad \sum_{i \in[m]}\left(C_{i, j}-C_{i, \ell}\right) \bar{W}_{i, j} \geq 0
\end{aligned}\right\}
$$

- MAXMIN profiles: Again polynomial-time solvable, via Linear Programming.

$$
\operatorname{MAXMIN}(R, C)=\left\{(\overline{\mathbf{x}}, \overline{\mathbf{y}}): \begin{array}{l}
\overline{\mathbf{x}} \in \arg \max _{\mathbf{x} \in \Delta([m])} \min _{j \in[n]} \mathbf{x}^{T} R \mathbf{e}_{\mathbf{j}} \\
\overline{\mathbf{y}} \in \arg \max _{\mathbf{y} \in \Delta([n])} \min _{i \in[m]} \mathbf{e}_{\mathrm{i}}^{T} C \mathbf{y}
\end{array}\right\}
$$

 bimatrix games, or arbitrarily good approximations!!!

Solving Bimatrix Games

Determination of One / All Nash Equilibria
We are interested in the computation, if possible in time polynomial in the representation of the game and / or the produced output, of the following problems:

- 2NASH:
- INPUT: A bimatrix game with non-negative rational payoff matrices: $R, C \in \mathbb{Q}_{\geq 0}^{m \times n}$.
- OUTPUT: Any (exact) Nash equilibrium, ie, any point of $N E(R, C)$.
- ALL2NASH:
- INPUT: A bimatrix game with non-negative rational payoff matrices: $R, C \in \mathbb{Q}_{\geq 0}^{m \times n}$.
- OUTPUT: All the extreme Nash equilibria, that determine $N E(R, C)$.

Solving Bimatrix Games

Determination of One / All Nash Equilibria
We are interested in the computation, if possible in time polynomial in the representation of the game and / or the produced output, of the following problems:

- 2NASH:
- INPUT: A bimatrix game with non-negative rational payoff matrices: $R, C \in \mathbb{Q}_{\geq 0}^{m \times n}$.
- OUTPUT: Any (exact) Nash equilibrium, ie, any point of $N E(R, C)$.

Complexity of 2NASH

- [Nash (1950)] : Existence of NE points, for finite games.
- [Kuhn (1961), Mangasarian (1964), Lemke-Howson (1964), Rosenmüller (1971), Wilson (1971), Scarf (1967), Eaves (1972), Laan-Talman (1979), van den Elzen-Talman (1991), ...] : Algorithms for 2NASH. None of them is provably of polynomial complexity.
- [Savani-von Stengel (2004)] : LH may take an exponential number of pivots, to converge to a NE point, for any initial choice of the label to be rejected.
- [Goldberg-Papadimitriou-Savani (2011)] : Any algorithm for 2NASH based on the homotopy method, has no hope of being polynomial-time, (unless $\mathcal{P}=\mathcal{P} \mathcal{S P} \mathcal{A C E}$).
- [CD / DGP (2006)]: $\mathcal{P} \mathcal{P} \mathcal{A D}$-completeness of $k N A S H, \forall k \geq 2$.
- [Gilboa-Zemel (1989), Conitzer-Sandholm (2003)] : $\mathcal{N P}$-complete to determine special NE points (eg, \exists more than one NE points? $\exists \mathrm{NE}$ with a lower bound on the payoff of one player? ...)

Formulations of 2NASH

Formulations for Nash Equilibrium Sets (I)

As a Linear Complementarity Problem (LCP)

- The set $N E(R, C)$ of Nash equilbria of the bimatrix game $\langle R, C\rangle$ can be expressed as the space of non-zero feasible solutions to a Linear Complementarity Problem, after proper scoling so that its points become probability-distribution pairs:

$$
N E(R, C) \approx L C P(M, \mathbf{q})-\{\mathbf{0}\}
$$

where: $R, C \in \mathbb{R}_{>0}^{m \times n}, M=\left[\begin{array}{rr}0 & -R \\ -C^{T} & 0\end{array}\right], \mathbf{q}=\left[\begin{array}{l}\mathbf{1}_{m} \\ \mathbf{1}_{n}\end{array}\right]$, and

$$
L C P(M, \mathbf{q})=\left\{(\mathbf{w}, \mathbf{z}): \mathbf{q}+M \mathbf{z}=\mathbf{w} \geq \mathbf{0} ; \mathbf{z} \geq \mathbf{0} ; \mathbf{w}^{T} \mathbf{z}=0\right\}
$$

Remark: The positivity of the payoff matrices is not a substantial constraint, due to invariance under shifting of $N E(R, C)$.

Formulations for Nash Equilibrium Sets (II)

As a Quadratic Programming Problem (QP)

- The space of Nash equilibria can be expressed as the space of optimal solutions in a Quadratic Programming Problem. Eg:
[Mangasarian-Stone (1964)]

$$
\text { (MS) } \begin{aligned}
\text { minimize } & \left(r-\mathbf{x}^{T} R \mathbf{y}\right)+\left(c-\mathbf{x}^{T} C \mathbf{y}\right) \\
\text { s.t. } & r \cdot \mathbf{1}-R \mathbf{y} \geq 0 \\
& c \cdot \mathbf{1}-C^{T} \mathbf{x} \geq 0 \\
& \mathbf{x} \in \Delta_{m} \quad \mathbf{y} \in \Delta_{n}
\end{aligned}
$$

Formulations for Nash Equilibrium Sets (II)

As a Quadratic Programming Problem (QP)

- The space of Nash equilibria can be expressed as the space of optimal solutions in a Quadratic Programming Problem. Eg:
[Mangasarian-Stone (1964)]

$$
\begin{aligned}
\text { minimize } & \left(r-\mathbf{x}^{T} R \mathbf{y}\right)+\left(c-\mathbf{x}^{T} C \mathbf{y}\right) \\
\text { s.t. } & r \cdot \mathbf{1}-R \mathbf{y} \geq 0 \\
& c \cdot \mathbf{1}-C^{T} \mathbf{x} \geq 0 \\
& \mathbf{x} \in \Delta_{m} \quad \mathbf{y} \in \Delta_{n}
\end{aligned}
$$

- Remark: The objective function is the sum of two upper bounds on two players' regrets against the given strategy of the opponent:

ROW player: $\operatorname{reg}_{l}(\mathbf{x}, \mathbf{y})=\max (R \mathbf{y})-\mathbf{x}^{T} R \mathbf{y}$
column player: $\operatorname{reg}_{I I}(\mathbf{x}, \mathbf{y})=\max \left(C^{T} \mathbf{x}\right)-\mathbf{x}^{T} C \mathbf{y}$

Formulations of Nash Equilibrium Sets (III)

An alternative, parameterized QP formulation for $N E(R, C)$:

- Marginal distributions of a correlated strategy $\mathbf{W}: \forall k \in[m], \forall j \in[n]$,

$$
\begin{aligned}
& x_{k}(\mathbf{W})=\sum_{\ell \in[n]} W_{k, \ell} \\
& y_{j}(\mathbf{W})=\sum_{k \in[m]} W_{k, j}
\end{aligned}
$$

	y_{1}	000	y_{i}	000	y_{n}
x_{1}	$w_{1,1}$	$*, *$	$w_{1, j}$	$*, *$	$w_{1, n}$
\vdots	$*, *$	$*, *$	$* *$	$*, *$	$*, *$
x_{k}	$w_{k, 1}$	$*, *$	$w_{k, j}$	$*, *$	$w_{k, n}$
\vdots	$*, *$	$*, *$	$*, *$	$*, *$	$*, *$
x_{m}	$w_{m, 1}$	$*, *$	$w_{m, j}$	$*, *$	$w_{m, n}$

Formulations of Nash Equilibrium Sets (III)

An alternative, parameterized QP formulation for $N E(R, C)$:

- Marginal distributions of a correlated strategy $\mathbf{W}: \forall k \in[m], \forall j \in[n]$,

$$
\begin{aligned}
& x_{k}(\mathbf{W})=\sum_{\ell \in[n]} W_{k, \ell} \\
& y_{j}(\mathbf{W})=\sum_{k \in[m]} W_{k, j}
\end{aligned}
$$

	y_{1}	000	y_{i}	000	y_{n}
x_{1}	$w_{1,1}$	$*, *$	$w_{1, j}$	$*, *$	$w_{1, n}$
\vdots	$*, *$	$*, *$	$*, *$	$*, *$	$*, *$
x_{k}	$w_{k, 1}$	$*, *$	$w_{k, j}$	$*, *$	$w_{k, n}$
\vdots	$*, *$	$*, *$	$*, *$	$*, *$	$*, *$
x_{m}	$w_{m, 1}$	$*, *$	$w_{m, j}$	$*, *$	$w_{m, n}$

THEOREM: [Kontogiannis-Spirakis (2010)]
$N E(R, C)$ is the set of marginal distributions for all the optimal solutions in the following parameterized quadratic program, for any choice of the parameter $\lambda \in(0,1)$ and $Z(\lambda)=\lambda R+(1-\lambda) C$:
(KS($\lambda)$)

$$
\begin{aligned}
\operatorname{minimize} & \sum_{i} \sum_{j} W_{i, j} Z(\lambda)_{i, j}-\mathbf{x}(\mathbf{W})^{T} Z(\lambda) \mathbf{y}(\mathbf{W}) \\
\text { s.t. } & \mathbf{W} \in C E(R, C)
\end{aligned}
$$

Formulations of Nash Equilibrium Sets (III)

An alternative, parameterized QP formulation for $N E(R, C)$:

- Marginal distributions of a correlated strategy $\mathbf{W}: \forall k \in[m], \forall j \in[n]$,

$$
\begin{aligned}
x_{k}(\mathbf{W}) & =\sum_{\ell \in[n]} W_{k, \ell} \\
y_{j}(\mathbf{W}) & =\sum_{k \in[m]} W_{k, j}
\end{aligned}
$$

	y_{1}	000	y_{i}	000	y_{n}
x_{1}	$w_{1,1}$	$*, *$	$w_{1, j}$	$*, *$	$w_{1, n}$
\vdots	$*, *$	$*, *$	$*, *$	$*, *$	$*, *$
x_{k}	$w_{k, 1}$	$*, *$	$w_{k, j}$	$*, *$	$w_{k, n}$
\vdots	$*, *$	$*, *$	$*, *$	$*, *$	$*, *$
x_{m}	$w_{m, 1}$	$*, *$	$w_{m, j}$	$*, *$	$w_{m, n}$

THEOREM: [Kontogiannis-Spirakis (2010)]
$N E(R, C)$ is the set of marginal distributions for all the optimal solutions in the following parameterized quadratic program, for any choice of the parameter $\lambda \in(0,1)$ and $Z(\lambda)=\lambda R+(1-\lambda) C$:
(KS $(\lambda))$

$$
\begin{aligned}
\operatorname{minimize} & \sum_{i} \sum_{j} W_{i, j} Z(\lambda)_{i, j}-\mathrm{x}(\mathbf{W})^{T} Z(\lambda) \mathrm{y}(\mathbf{W}) \\
\text { s.t. } & \mathbf{W} \in C E(R, C)
\end{aligned}
$$

Formulations of Nash Equilibrium Sets (III)

An alternative, parameterized QP formulation for $N E(R, C)$:

- Marginal distributions of a correlated strategy $\mathbf{W}: \forall k \in[m], \forall j \in[n]$,

$$
\begin{aligned}
& x_{k}(\mathbf{W})=\sum_{\ell \in[n]} W_{k, \ell} \\
& y_{j}(\mathbf{W})=\sum_{k \in[m]} W_{k, j}
\end{aligned}
$$

	y_{1}	000	y_{i}	000	y_{n}
x_{1}	$w_{1,1}$	$*, *$	$w_{1, j}$	$*, *$	$w_{1, n}$
\vdots	$*, *$	$*, *$	$*, *$	$*, *$	$*, *$
x_{k}	$w_{k, 1}$	$*, *$	$w_{k, j}$	$*, *$	$w_{k, n}$
\vdots	$*, *$	$*, *$	$*, *$	$*, *$	$*, *$
x_{m}	$w_{m, 1}$	$*, *$	$w_{m, j}$	$*, *$	$w_{m, n}$

THEOREM: [Kontogiannis-Spirakis (2010)]
$N E(R, C)$ is the set of marginal distributions for all the optimal solutions in the following parameterized quadratic program, for any choice of the parameter $\lambda \in(0,1)$ and $Z(\lambda)=\lambda R+(1-\lambda) C$:
$(\mathrm{KS}(\lambda))$

$$
\begin{aligned}
\operatorname{minimize} & \sum_{i} \sum_{j} W_{i, j} Z(\lambda)_{i, j}-\mathbf{x}(\mathbf{W})^{T} Z(\lambda) \mathbf{y}(\mathbf{W}) \\
\text { s.t. } & \mathbf{W} \in C E(R, C)
\end{aligned}
$$

Formulations of Nash Equilibrium Sets (III)

An alternative, parameterized QP formulation for $N E(R, C)$:

- Marginal distributions of a correlated strategy $\mathbf{W}: \forall k \in[m], \forall j \in[n]$,

$$
\begin{aligned}
& x_{k}(\mathbf{W})=\sum_{\ell \in[n]} W_{k, \ell} \\
& y_{j}(\mathbf{W})=\sum_{k \in[m]} W_{k, j}
\end{aligned}
$$

	y_{1}	000	y_{i}	000	y_{n}
x_{1}	$w_{1,1}$	$*, *$	$w_{1, j}$	$*, *$	$w_{1, n}$
\vdots	$*, *$	$*, *$	$*, *$	$*, *$	$*, *$
x_{k}	$w_{k, 1}$	$*, *$	$w_{k, j}$	$*, *$	$w_{k, n}$
\vdots	$*, *$	$*, *$	$*, *$	$*, *$	$*, *$
x_{m}	$w_{m, 1}$	$*, *$	$w_{m, j}$	$*, *$	$w_{m, n}$

THEOREM: [Kontogiannis-Spirakis (2010)]
$N E(R, C)$ is the set of marginal distributions for all the optimal solutions in the following parameterized quadratic program, for any choice of the parameter $\lambda \in(0,1)$ and $Z(\lambda)=\lambda R+(1-\lambda) C$:
(KS($\lambda)$)

$$
\begin{aligned}
\operatorname{minimize} & \sum_{i} \sum_{j} W_{i, j} Z(\lambda)_{i, j}-\mathbf{x}(\mathbf{W})^{T} Z(\lambda) \mathbf{y}(\mathbf{W}) \\
\text { s.t. } & \mathbf{W} \in C E(R, C)
\end{aligned}
$$

Formulations of Nash Equilibrium Sets (III)

An alternative, parameterized QP formulation for $N E(R, C)$:

- Marginal distributions of a correlated strategy $\mathbf{W}: \forall k \in[m], \forall j \in[n]$,

$$
\begin{aligned}
x_{k}(\mathbf{W}) & =\sum_{\ell \in[n]} W_{k, \ell} \\
y_{j}(\mathbf{W}) & =\sum_{k \in[m]} W_{k, j}
\end{aligned}
$$

	y_{1}	000	y_{i}	000	y_{n}
x_{1}	$w_{1,1}$	$*, *$	$w_{1, j}$	$*, *$	$w_{1, n}$
\vdots	$*, *$	$*, *$	$*, *$	$*, *$	$*, *$
x_{k}	$w_{k, 1}$	$*, *$	$w_{k, j}$	$*, *$	$w_{k, n}$
\vdots	$*, *$	$*, *$	$*, *$	$*, *$	$*, *$
x_{m}	$w_{m, 1}$	$*, *$	$w_{m, j}$	$*, *$	$w_{m, n}$

THEOREM: [Kontogiannis-Spirakis (2010)]
$N E(R, C)$ is the set of marginal distributions for all the optimal solutions in the following parameterized quadratic program, for any choice of the parameter $\lambda \in(0,1)$ and $Z(\lambda)=\lambda R+(1-\lambda) C$:
(KS($\lambda)$)

$$
\begin{aligned}
\operatorname{minimize} & \sum_{i} \sum_{j} W_{i, j} Z(\lambda)_{i, j}-\mathbf{x}(\mathbf{W})^{T} Z(\lambda) \mathbf{y}(\mathbf{W}) \\
\text { s.t. } & \mathbf{W} \in C E(R, C)
\end{aligned}
$$

Lemke \& Howson Algorithm

A Combinatorial Algorithm for 2NASH (I)
LH Algorithm [Lemke-Howson (1964)]

- Based on pivoting (like Simplex for LPs).

A Combinatorial Algorithm for 2NASH (I)

LH Algorithm [Lemke-Howson (1964)]

- Based on pivoting (like Simplex for LPs).
- Exploits the best response polyhedra of the game, that are also used in the LCP formulation of $N E(R, C)$, if we ignore the complementarity conditions:

$$
\begin{aligned}
& \bar{P}=\left\{(\mathbf{y}, u): \mathbf{1} u-R \mathbf{y} \geq \mathbf{0} ; \mathbf{1}^{T} \mathbf{y}=1 ; \mathbf{y} \geq \mathbf{0}\right\} \\
& \bar{Q}=\left\{(\mathbf{x}, v): \mathbf{1} v-C^{T} \mathbf{x} \geq \mathbf{0} ; \mathbf{1}^{T} \mathbf{x}=1 ; \mathbf{x} \geq \mathbf{0}\right\}
\end{aligned}
$$

A Combinatorial Algorithm for 2NASH (I)

LH Algorithm [Lemke-Howson (1964)]

- Based on pivoting (like Simplex for LPs).
- Exploits the best response polyhedra of the game, that are also used in the LCP formulation of $\operatorname{NE}(R, C)$, if we ignore the complementarity conditions:

$$
\begin{aligned}
P & =\{\psi: \mathbf{1}-R \psi \geq \mathbf{0} ; \psi \geq \mathbf{0}\} \\
Q & =\left\{x: \mathbf{1}-C^{T} \chi \geq \mathbf{0} ; x \geq \mathbf{0}\right\}
\end{aligned}
$$

ASSUMPTION (wlog): The payoff matrices are positive.

A Combinatorial Algorithm for 2NASH (I)

LH Algorithm [Lemke-Howson (1964)]

- Based on pivoting (like Simplex for LPs).
- Exploits the best response polyhedra of the game, that are also used in the LCP formulation of $\operatorname{NE}(R, C)$, if we ignore the complementarity conditions:

$$
\begin{aligned}
P & =\{\psi: \mathbf{1}-R \psi \geq \mathbf{0} ; \psi \geq \mathbf{0}\} \\
Q & =\left\{\chi: \mathbf{1}-C^{T} \chi \geq \mathbf{0} ; x \geq \mathbf{0}\right\}
\end{aligned}
$$

ASSUMPTION (wlog): The payoff matrices are positive.

- Labels: $\forall(\chi, \psi) \in Q \times P$,

$$
L(\chi, \psi)=\begin{array}{lll}
\left\{i \in[m]: \chi_{i}=0\right\} & \cup\left(m+\left\{j \in[n]:\left(C^{\top} \chi\right)_{j}=1\right\}\right) \\
\left\{i \in[m]:(R \psi)_{i}=1\right\} & \cup\left(m+\left\{j \in[n]: \psi_{j}=0\right\}\right)
\end{array}
$$

A Combinatorial Algorithm for 2NASH (II)

LH Algorithm [Lemke-Howson (1964)]

- Crucial Observation: A profile of strategies ($\overline{\mathbf{x}}, \overline{\mathbf{y}}$) is Nash equilibrium iff the corresponding (non-zero) point $(\bar{\chi}, \bar{\psi}) \in Q \times P$ is completely labeled: all actions appear as labels in $L(X, \psi)$.
- For non-degenerate games: Only pair of vertices in $Q \times P$ may be completely labeled.

A Combinatorial Algorithm for 2NASH (II)

LH Algorithm [Lemke-Howson (1964)]

- Crucial Observation: A profile of strategies ($\overline{\mathbf{x}}, \overline{\mathbf{y}}$) is Nash equilibrium iff the corresponding (non-zero) point $(\bar{\chi}, \bar{\psi}) \in Q \times P$ is completely labeled: all actions appear as labels in $L(X, \psi)$.
- For non-degenerate games: Only pair of vertices in $Q \times P$ may be completely labeled.

Pseudocode of LH (for non-degenerate games)

1. Initialization: Starting from the completely labeled point $(\mathbf{0}, \mathbf{0})$ (artificial equilibrium), pivot-in (ie, label-out) an arbitrory label from (0,0).
2. Pivot-in (ie, label-out) the unique double-label, at the "other" polyhedron.
3. if the uniquely missing label is pivoted-out (labeled-in)
4. then return the new, completely labeled point (χ, ψ).
5. else goto step 2 .

EXAMPLE: Execution of LH

	4	5	6
1	4,6	4,12	4,0
2	0,0	0,4	6,0
3	5,8	0,0	0,13

EXAMPLE: Execution of LH

	4	5	6
1	4,6	4,12	4,0
2	0,0	0,4	6,0
3	5,8	0,0	0,13

EXAMPLE: Execution of LH

	4	5	6
1	4,6	4,12	4,0
2	0,0	0,4	6,0
3	5,8	0,0	0,13

EXAMPLE: Execution of LH

	4	5	6
1	4,6	4,12	4,0
2	0,0	0,4	6,0
3	5,8	0,0	0,13

EXAMPLE: Execution of LH

	4	5	6
1	4,6	4,12	4,0
2	0,0	0,4	6,0
3	5,8	0,0	0,13

EXAMPLE: Execution of LH

	4	5	6
1	4,6	4,12	4,0
2	0,0	0,4	6,0
3	5,8	0,0	0,13

EXAMPLE: Execution of LH

	4	5	6
1	4,6	4,12	4,0
2	0,0	0,4	6,0
3	5,8	0,0	0,13

EXAMPLE: Execution of LH

	4	5	6
1	4,6	4,12	4,0
2	0,0	0,4	6,0
3	5,8	0,0	0,13

EXAMPLE: Execution of LH

	4	5	6
1	4,6	4,12	4,0
2	0,0	0,4	6,0
3	5,8	0,0	0,13

EXAMPLE: Execution of LH

	4	5	6
1	4,6	4,12	4,0
2	0,0	0,4	6,0
3	5,8	0,0	0,13

EXAMPLE: Execution of LH

	4	5	6
1	4,6	4,12	4,0
2	0,0	0,4	6,0
3	5,8	0,0	0,13

Why LH Works (for non-degenerate games)

- The artificial equilibrium $(\mathbf{0}, \mathbf{0})$ is completely labeled.
- The current pair of points, during the execution of LH, has exactly one missing label and two adjacent edges (one per polyhedron), for labeling-out each of the only two copies of the unique double-label.
- The "other ends" of these two edges lead to pairs of vertices with at most one double-label. The only missing label (if any) is always the one initially labeled-out.
- Each edge is traversed towards new vertices, so that no cycles may appear.
- Termination: Starting from one end of a finite path, we move towards the other end of this unique path, that is necessarily a completely-labeled pair of vertices.

Skeleton of the Talk

(1) Bimatrx Games Preliminaries

- Complexity of 2NASH
- Formulations for 2NASH
- The algorithm of Lemke \& Howson
(2) Polynomial-time Tractable Subclasses
(3) Approximability of 2 NASH
- Theoretical Analysis
- Experimental Study

(4) Conclusions

Polynomial-time Tractable Classes wrt 2NASH

- Zero-sum Games: Any profile of strategies is Nash equilibrium iff it is a MAXMIN profile
- [J. von Neumann (1928)] : Existence proof for NE in zero-sum bimatrix games, based on a Fixed Point argument.
- [Dantzig (1947)] : MAXMIN profiles for bimatrix games are equivalent to a pair of primal-dual linear programs.
- [Khachiyan (1979), Karmakar (1984)] : Polynomial-tractability of LP.
- Constant-rank Games: $\operatorname{rank}(R+C)=k$ [Kannan-Theobald (2007)] : Existence of FPTAS for constructing ε-NE points.
- Rank-1 Games: $\operatorname{ronk}(R+C)=1$ [Adsul-Garg-Mehta-Sohoni (2011)] : Polynomial-time algorithm for determining exact Nash equilibria.
- (Very) Sparse Games \& Games with Pure Equilibria: Relatively easy cases.

Other Tractable Classes?

Constant-sum games are poly-time solvable. Constant-rank games admit a FPTAS.

Other Tractable Classes?

Constant-sum games are poly-time solvable. Constant-rank games admit a FPTAS.
© Another subclass of poly-time solvable games: Mutually-concave games.

The Class of Mutually Concave Games

DEFINITION: Mutually Concave (MC) Games
A bimatrix game $\langle R, C\rangle$ is mutually concave, iff $\exists \lambda \in(0,1)$ s.t. for $Z(\lambda)=\lambda R+(1-\lambda) C$, the function $H_{\lambda}(\mathbf{x}, \mathbf{y}) \equiv \mathbf{x}^{T} Z(\lambda) \mathbf{y}$ is concove.

Poly-time Solvability of 2NASH for MC Games

THEOREM: [Kontogiannis-Spirakis (2010)]
For arbitrary normolized bimatrix MC game $\langle R, C\rangle$, with rational payoff matrices, there exists a (unique, except for some trivial cases) rational number $\lambda^{*} \in(0,1)$ s.t. for $Z(\lambda)=\lambda^{*} R+\left(1-\lambda^{*}\right) C$ the following quadratic program is convex, and therefore polynomial-time solvable:

$$
\begin{aligned}
\text { minimize } & \sum_{i} \sum_{j} W_{i, j} Z\left(\lambda^{*}\right)_{i, j}-\mathbf{x}(\mathbf{W})^{T} Z\left(\lambda^{*}\right) \mathbf{y}(\mathbf{W}) \\
\text { s.t. } & \mathbf{W} \in C E(R, C)
\end{aligned}
$$

Poly-time Solvability of 2NASH for MC Games

THEOREM: [Kontogiannis-Spirakis (2010)]
For arbitrary normalized bimatrix MC game $\langle R, C\rangle$, with rational payoff matrices, there exists a (unique, except for some trivial cases) rational number $\lambda^{*} \in(0,1)$ s.t. for $Z(\lambda)=\lambda^{*} R+\left(1-\lambda^{*}\right) C$ the following quadratic program is convex, and therefore polynomial-time solvable:

$$
\begin{aligned}
& \hline \text { minimize } \lambda^{*} \cdot\left(r-\mathbf{x}^{T} R \mathbf{y}\right)+\left(1-\lambda^{*}\right) \cdot\left(c-\mathbf{x}^{T} C \mathbf{y}\right) \\
& \text { s.t. } r \cdot \mathbf{1}-R \mathbf{y} \geq 0 \\
& c \cdot \mathbf{1}-C^{T} \mathbf{x} \geq 0 \\
& \mathbf{x} \in \Delta_{m} \\
& \mathbf{y} \in \Delta_{n} \\
& \hline
\end{aligned}
$$

Poly-time Solvability of 2NASH for MC Games

 THEOREM: [Kontogiannis-Spirakis (2010)]For arbitrary normalized bimatrix MC game $\langle R, C\rangle$, with rational payoff matrices, there exists a (unique, except for some trivial cases) rational number $\lambda^{*} \in(0,1)$ s.t. for $Z(\lambda)=\lambda^{*} R+\left(1-\lambda^{*}\right) C$ the following quadratic program is convex, and therefore polynomial-time solvable:

$$
\begin{aligned}
& \hline \text { minimize } \lambda^{*} \cdot\left(r-\mathbf{x}^{T} R \mathbf{y}\right)+\left(1-\lambda^{*}\right) \cdot\left(c-\mathbf{x}^{T} C \mathbf{y}\right) \\
& \text { s.t. } r \cdot \mathbf{1}-R \mathbf{y} \geq 0 \\
& c \cdot \mathbf{1}-C^{T} \mathbf{x} \geq 0 \\
& \mathbf{x} \in \Delta_{m} \\
& \hline
\end{aligned}
$$

- Are we done?

Poly-time Solvability of 2NASH for MC Games

THEOREM: [Kontogiannis-Spirakis (2010)]
For arbitrary normalized bimatrix MC game $\langle R, C\rangle$, with rational payoff matrices, there exists a (unique, except for some trivial cases) rational number $\lambda^{*} \in(0,1)$ s.t. for $Z(\lambda)=\lambda^{*} R+\left(1-\lambda^{*}\right) C$ the following quadratic program is convex, and therefore polynomial-time solvable:

$$
\begin{aligned}
& \hline \text { minimize } \lambda^{*} \cdot\left(r-\mathbf{x}^{T} R \mathbf{y}\right)+\left(1-\lambda^{*}\right) \cdot\left(c-\mathbf{x}^{T} C \mathbf{y}\right) \\
& \text { s.t. } r \cdot \mathbf{1}-R \mathbf{y} \geq 0 \\
& c \cdot \mathbf{1}-C^{T} \mathbf{x} \geq 0 \\
& \mathbf{x} \in \Delta_{m} \\
& \hline
\end{aligned}
$$

- Are we done?

E NOT YET!!!

It is crucial to be able to recognize in polynomial time whether a bimatrix game belongs to the MC class.

Recognition of Poly-time Solvable Bimatrix Classes

- Trivial issue for a game $\langle R, C\rangle$ that...
- ...has constont-sum payoffs.
- ...has constont ronk.
- ...possesses a pure Nash equilibrium.
- ...is a very sparse win-lose game.

Recognition of Poly-time Solvable Bimatrix Classes

- Trivial issue for a game $\langle R, C\rangle$ that...
- ...has constont-sum payoffs.
- ...has constont ronk.
- ...possesses a pure Nash equilibrium.
- ...is a very sparse win-lose game.
- Is there a way to detected mutual concovity also in polynomial time?

Recognition of Poly-time Solvable Bimatrix Classes

- Trivial issue for a game $\langle R, C\rangle$ that...
- ...has constont-sum payoffs.
- ...has constont ronk.
- ...possesses a pure Nash equilibrium.
- ...is a very sparse win-lose game.
- Is there a way to detected mutual concovity also in polynomial time?
© YES!!!

Characterizations of Mutual Concavity

PROPOSITION: [Kontogiannis-Spirakis (2010)]
A bimatrix game $\langle R, C\rangle$ is mutually concave iff any of the following properties holds:
9. $\exists \lambda \in(0,1): \xi^{T} Z(\lambda) \psi=0$, for any pair of directions of chonge in strotegies ξ, ψ for the two players (ie, such that $\left.1^{T} \xi=1^{T} \psi=0\right)$.

2 $\exists \lambda \in(0,1): Z(\lambda) \cdot \psi=1 \cdot c$, for an arbitrary constant c and any direction of change, $\psi \in \mathbb{R}^{n}: 1^{T} \psi=0$, for the strategy of the column player.

Characterizations of Mutual Concavity

PROPOSITION: [Kontogiannis-Spirakis (2010)]
A bimatrix game $\langle R, C\rangle$ is mutually concave iff any of the following properties holds:
ง $\exists \lambda \in(0,1): \xi^{T} Z(\lambda) \psi=0$, for any pair of directions of chonge in strotegies ξ, ψ for the two players (ie, such that $\left.1^{T} \xi=1^{T} \psi=0\right)$.
${ }^{2} \exists \lambda \in(0,1): Z(\lambda) \cdot \psi=1 \cdot c$, for an arbitrary constant c and any direction of change, $\psi \in \mathbb{R}^{n}: 1^{T} \psi=0$, for the strategy of the column player.

COROLLARY: Constant-Sum Games \& MC Class
Every constant-sum game $\left\langle A,-A+c \cdot \mathbf{1} \cdot \mathbf{1}^{T}\right\rangle$ is mutually concave.

Characterizations of Mutual Concavity

PROPOSITION: [Kontogiannis-Spirakis (2010)]
A bimatrix game $\langle R, C\rangle$ is mutually concave iff any of the following properties holds:

* $\exists \lambda \in(0,1): \xi^{T} Z(\lambda) \psi=0$, for any pair of directions of change in strotegies ξ, ψ for the two players (ie, such that $1^{T} \xi=1^{T} \psi=0$).

2. $\exists \lambda \in(0,1): Z(\lambda) \cdot \psi=1 \cdot c$, for an arbitrary constant c and any direction of change, $\psi \in \mathbb{R}^{n}: 1^{T} \psi=0$, for the strategy of the column player.

COROLLARY: Constant-Sum Games \& MC Class

Every constant-sum game $\left\langle A,-A+c \cdot \mathbf{1} \cdot \mathbf{1}^{T}\right\rangle$ is mutually concave.

- Question: How do we detect the existence (or not) of the proper λ^{*}-value?

Mutual Concavity for 2×2 Games

PROPOSITION: [Kontogiannis-Spirakis (2010)]

For any 2×2 game $\langle A, B\rangle$, let $\alpha=A_{1,1}+A_{2,2}-A_{1,2}-A_{2,1}$ and $b=B_{1,1}+B_{2,2}-B_{1,2}-B_{2,1}$. Then, $\langle A, B\rangle$ is mutually concave iff:

$$
\alpha=b=0 \vee \min \{\alpha, b\}<0<\max \{a, b\}
$$

If $\alpha, b \neq 0$, then the unique value $\lambda^{*}=\frac{-b}{\alpha-b}$ proves (if it holds) the mutual concavity of the game.

Mutual Concavity for 2×2 Games

PROPOSITION: [Kontogiannis-Spirakis (2010)]

For any 2×2 game $\langle A, B\rangle$, let $\alpha=A_{1,1}+A_{2,2}-A_{1,2}-A_{2,1}$ and $b=B_{1,1}+B_{2,2}-B_{1,2}-B_{2,1}$. Then, $\langle A, B\rangle$ is mutually concave iff:

$$
\alpha=b=0 \vee \min \{\alpha, b\}<0<\max \{\alpha, b\}
$$

If $\alpha, b \neq 0$, then the unique value $\lambda^{*}=\frac{-b}{\alpha-b}$ proves (if it holds) the mutual concavity of the game.

COROLLARY: A Necessary Condition for MC

If an $m \times n$ bimatrix game $\langle A, B\rangle$ is mutually concave, then the following must hold: $\exists \lambda^{*} \in(0,1): \forall 1 \leq i<k \leq m, \forall 1 \leq j<\ell \leq n$,

$$
\left[\alpha_{i k, j l}=b_{i k, j \ell}=0\right]
$$

$\left[\max \left\{\alpha_{i k, j \ell}, b_{i k, j \ell}\right\}>0>\min \left\{\alpha_{i k, j l}, b_{i k, j \ell}\right\} \wedge \wedge \quad \lambda^{*}=\frac{-b_{i k j l}}{\alpha_{i k j l}-b_{i k j l}}\right]$

Examples of MC / non-MC Games

Checking Mutual Concavity in Poly-time

ALGORITHM: Detecting MC for non-trivial games INPUT: $\quad(R, C) \in \mathbb{R}^{m \times n}$.
(1) Check all 2×2 subgames of (R, C), for the induced λ-values.
(2) if all 2×2 subgames have zero α - and b-values
(3) then return ("there is PNE")
(4) if there is a unique induced λ^{*}-value by all 2×2 subgames with nonzero α - and b-values
(5) then if $\left(\begin{array}{cc}0 & Z\left(\lambda^{*}\right) \\ Z\left(\lambda^{*}\right)^{T} & \mathrm{O}\end{array}\right)$ is negative semidefinite
(6) then return ("MC-game")
(7) return ("non-MC-game")

MC-games vs. Fixed-Rank Games

- Even rank- 1 games may not be MC-games.

		betray	silent
	N	-5, -5	0, -10
	鿬	-10, 0	-1, -1

MC-games vs. Fixed-Rank Games

- Even rank-1 games may not be MC-games.

- There exist MC games that have full rank. Eg, for:

$$
Z=\left[\begin{array}{rrrrrrr}
1 & 2 & 4 & 8 & 16 & 32 & 64 \\
0 & 1 & 3 & 7 & 15 & 31 & 63 \\
2 & 3 & 5 & 9 & 17 & 33 & 65 \\
-1 & 0 & 2 & 6 & 14 & 30 & 62 \\
3 & 4 & 6 & 10 & 18 & 34 & 66 \\
-2 & -1 & 1 & 5 & 13 & 29 & 61 \\
4 & 5 & 7 & 11 & 19 & 35 & 67
\end{array}\right]
$$

with $\operatorname{rank}(Z)=2$, the game $\langle R, C\rangle$ with $R=I_{7}$ and $C=\frac{4}{3} Z-\frac{1}{3} R$ is indeed (cf. next slide's characterization) an MC-game, but it has $\operatorname{ronk}(R+C)=7$.

MC Games vs. Strategically Zero-Sum Games
PROPOSITION: [Kontogiannis.Spiriaks (2010)]
For any $m, n \geq 2$ and payoff matrices $R, C \in \mathbb{R}^{m \times n}$, the game $\langle R, C\rangle$ is an MC-game iff: $\exists \lambda \in(0,1), \exists \mathbf{a} \in \mathbb{R}^{m}, \exists \mathrm{~d}=\left[0, d_{2}, \ldots, d_{n}\right]^{T} \in \mathbb{R}^{n}$:

$$
\forall j \in[n], \quad Z(\lambda)[*, j]=-d_{j} \cdot \mathbf{1}+\mathbf{a}
$$

MC Games vs. Strategically Zero-Sum Games

PROPOSITION: [Kontogiannis-Spirakis (2010)]
For any $m, n \geq 2$ and payoff matrices $R, C \in \mathbb{R}^{m \times n}$, the game $\langle R, C\rangle$ is an MC-game iff: $\exists \lambda \in(0,1), \exists \mathrm{a} \in \mathbb{R}^{m}, \exists \mathrm{~d}=\left[0, d_{2}, \ldots, d_{n}\right]^{T} \in \mathbb{R}^{n}$:

$$
\forall j \in[n], \quad Z(\lambda)[*, j]=-d_{j} \cdot \mathbf{1}+\mathbf{a}
$$

Some Remarks:

(1) The MC-class matches the class of strategically-zero-sum (SZS) games of [Moulin-Vial (1978)] .
2. Characterizing the SZS-property implies the solution of a large linear program, in time $O\left(n^{6}\right)$.
3 Characterizing the MC-property implies the solution of a much smaller quadratic progrom, in time $\mathrm{O}\left(n^{4}\right)$.

Skeleton of the Talk

(1) Bimatrx Games Preliminaries

- Complexity of 2NASH
- Formulations for 2NASH
- The algorithm of Lemke \& Howson
(2) Polynomial-time Tractable Subclasses
(3) Approximability of 2 NASH
- Theoretical Analysis
- Experimental Study
(4) Conclusions

Reminder...

DEFINITION: Approximate Nash Equilibria

For a normalized bimatrix game $\langle R, C\rangle$, a profile of (uncorrelated) strotegies ($\overline{\mathrm{x}}, \overline{\mathrm{y}}$) is:

- ε-approximate Nash equilibrium (ε-NE) iff no player can improve her expected payoff more than an additive term of $\varepsilon \geq 0$ by unilaterally changing her strategy, against the given strategy of the opponent: $\forall \mathrm{x} \in \Delta_{m}, \forall \mathbf{y} \in \Delta_{n}$,

$$
\overline{\mathrm{x}}^{T} R \overline{\mathbf{y}} \geq \mathbf{x}^{T} R \overline{\mathbf{y}}-\varepsilon \wedge \overline{\mathbf{x}}^{T} C \overline{\mathbf{y}} \geq \overline{\mathbf{x}}^{T} C \mathbf{y}-\varepsilon
$$

- ε-well supported approximate Nash equilibrium (ε-WSNE) iff no player assigns positive probability mass to actions that are less than an additive term $\varepsilon \geq 0$ than the maximum payoff she may get against the given strategy of the opponent:
$\forall i \in[m], \forall j \in[n]$,
$\left[\bar{x}_{i}>0 \rightarrow \mathbf{e}_{\mathbf{i}}^{T} R \overline{\mathbf{y}} \geq \max (R \overline{\mathbf{y}})-\varepsilon\right] \wedge\left[\bar{y}_{j}>0 \rightarrow \overline{\mathbf{x}}^{T} C \mathbf{e}_{\mathbf{j}} \geq \max \left(\overline{\mathbf{x}}^{T} C\right)-\varepsilon\right]$

Approximability of 2 NASH

Approximability of 2NASH

- [Althöfer (1994) / Lipton-Markakis-Mehta (2003)] : Subexponential-time approximation scheme for $\varepsilon-W S N E$, in time $n^{O}\left(\epsilon^{-2} \cdot \log n\right)$.

Approximability of 2NASH

- [Althöfer (1994) / Lipton-Markakis-Mehta (2003)] : Subexponential-time approximation scheme for $\varepsilon-W S N E$, in time $n^{\varrho}\left(\epsilon^{-2} \cdot \log n\right)$.
- Polynomial-time Approximation Algorithms for 2NASH?

Approximability of 2NASH

- [Althöfer (1994) / Lipton-Markakis-Mehta (2003)] : Subexponential-time approximation scheme for $\varepsilon-W S N E$, in time $n^{O}\left(\epsilon^{-2} \cdot \log n\right)$.
- Polynomial-time Approximation Algorithms for 2NASH?

```
\varepsilon-NE: > [Kontogiannis-Panagopoulou-Spirakis (2006)] : 0.75
    > [Daskalakis-Papadimitriou-Mehta (2006)] : 0.5
    \ [Daskalakis-Papadimitriou-Mehta (2007)] : ~ 0.38
    > [Bosse-Byrka-Markakis (2007)] : ~ 0.36
    - [Spirakis-Tsaknakis (2007)] : ~ 0.3393
    > [Kontogiannis-Spirakis (2011)] : ~ 1/3+\delta, for any
        constant \delta>0 and symmetric games.
```


Approximability of 2NASH

- [Althöfer (1994) / Lipton-Markakis-Mehta (2003)] : Subexponential-time approximation scheme for $\varepsilon-W S N E$, in time $n^{O}\left(\epsilon^{-2} \cdot \log n\right)$.
- Polynomial-time Approximation Algorithms for 2NASH?

```
        \varepsilon-NE: \triangleright [Kontogiannis-Panagopoulou-Spirakis (2006)] : 0.75
            > [Daskalakis-Papadimitriou-Mehta (2006)] : 0.5
                            \ [Daskalakis-Papadimitriou-Mehta (2007)] : ~ 0.38
                            > [Bosse-Byrka-Markakis (2007)] : ~ 0.36
                            > [Spirakis-Tsaknakis (2007)] : ~ 0.3393
                            \ [Kontogiannis-Spirakis (2011)] : ~ 1/3+\delta, for any
        constant \delta>0 and symmetric games.
    \varepsilon-WSNE: > [Kontogiannis-Spirakis (2007)] : 0.667
    \vee [Fearnley-Goldberg-Savani-Sфrensen (201 2)] : <0.667
```


Approximability of 2NASH

- [Althöfer (1994) / Lipton-Markakis-Mehta (2003)] : Subexponential-time approximation scheme for $\varepsilon-W S N E$, in time $n^{O}\left(\epsilon^{-2} \cdot \log n\right)$.
- Polynomial-time Approximation Algorithms for 2NASH?

```
        \varepsilon-NE: > [Kontogiannis-Panagopoulou-Spirakis (2006)]: 0.75
            > [Daskalakis-Papadimitriou-Mehta (2006)] : 0.5
                            > [Daskalakis-Papadimitriou-Mehta (2007)] : ~ 0.38
                            > [Bosse-Byrka-Markakis (2007)] : ~ 0.36
                            > [Spirakis-Tsaknakis (2007)] : ~ 0.3393
                            > [Kontogiannis-Spirakis (2011)] : ~ 1/3+\delta, for any
        constant \delta>0 and symmetric games.
\varepsilon-WSNE: > [Kontogiannis-Spirakis (2007)]: 0.667
    > [Fearnley-Goldberg-Savani-S\phirensen (2012)] : <0.667
```

- Question: Can we break any of the bounds, $1 / 3$ for ε-NE and $2 / 3$ for ε-WSNE? Is there a PTAS for either case?

Approximability of 2NASH

- [Althöfer (1994) / Lipton-Markakis-Mehta (2003)] : Subexponential-time approximation scheme for $\varepsilon-W S N E$, in time $n^{\varrho}\left(\epsilon^{-2} \cdot \log n\right)$.
- Polynomial-time Approximation Algorithms for 2NASH?

$$
\varepsilon-N E:
$$

- [Kontogiannis-Spirakis (2011)]: $\sim 1 / 3+\delta$, for any constant $\delta>0$ and symmetric games.

Theoretical Analysis of SYMMETRIC-2NASH Approximations

About Symmetric Bimatrix Games...

- $n \times n$ games $\langle R, C\rangle$, where the players may exchange roles (ie, the payoff matrices are: $R=S, C=S^{T}$.
- [Nash (1950)] : Every finite symmetric game has a symmetric Nash equilibrium (in which all players adopt the same strategy).
- For symmetric strategy profiles in symmetric bimatrix games, the players have common expected payoffs and also common expected payoff vectors, against the opponent's strategy.
- A formalism for SYMMETRIC-2NASH: For
$\mathrm{x}=\binom{\mathrm{z}}{\mathrm{z}}, \quad Q=\left(\begin{array}{cc}0 & S^{T} \\ S & 0\end{array}\right)$,

Necessary Optimality (KKT) Conditions for (SMS)

$$
\begin{gathered}
\nabla f(\bar{s}, \overline{\mathbf{z}})=\binom{1}{-S_{\bar{z}}-S^{T} \bar{z}}=\left(\begin{array}{c}
S^{1^{T} \bar{w}} \bar{w}+\bar{u}+1 \bar{\zeta}
\end{array}\right) \\
0 \leq\binom{\bar{w}}{\bar{u}}^{T} \cdot\binom{1 \bar{s}-S \bar{z}}{\bar{z}} \leq \delta \\
\bar{s} \in \mathbb{R}, \quad S \overline{\mathbf{z}} \leq \mathbf{1} \bar{s}, \quad \mathbf{1}^{T} \overline{\mathbf{z}}=1, \overline{\mathbf{z}} \geq \mathbf{0} \\
\overline{\mathbf{w}} \geq \mathbf{0}, \bar{\zeta} \in \mathbb{R}, \overline{\mathbf{u}} \geq \mathbf{0}
\end{gathered}
$$

- δ-KKT Points of (SMS): Feasible solutions ($\bar{s}, \overline{\mathbf{z}}, \overline{\mathbf{w}}, \bar{\zeta}, \overline{\mathrm{u}})$ for (KKTSMS).
- Some Remarks:
(1) The Lagrange multiplier $\overline{\mathrm{w}}$ is an alternative strategy for the players, ie, a point from $\Delta([n])$.
(2) $\overline{\mathrm{w}}$ is also a δ-approximate best response of the ROW player against the given strategy $\overline{\mathbf{z}}$ of the opponent: $\bar{s} \leq \overline{\mathbf{w}}^{T} S \overline{\mathbf{z}}+\delta$.

Computing (approximate) KKT Points of QPs

- Exact computation of a KKT point of Quadratic Programs: $\mathcal{N} \mathcal{P}$-hard problem.

Computing (approximate) KKT Points of QPs

- Exact computation of a KKT point of Quadratic Programs: $\mathcal{N P}$-hard problem.

THEOREM: Approximate KKT Points in QP [Ye (1998)]
There is a FPTAS for computing δ-KKT points of a n-varialbe Quadratic Program, in time:

$$
O\left(\left[\frac{n^{6}}{\delta} \log \left(\frac{1}{\delta}\right)+n^{4} \log (n)\right] \cdot\left[\log \log \left(\frac{1}{\delta}\right)+\log (n)\right]\right)
$$

Computing (approximate) KKT Points of QPs

- Exact computation of a KKT point of Quadratic Programs: $\mathcal{N P}$-hard problem.

THEOREM: Approximate KKT Points in QP [Ye (1998)]
There is a FPTAS for computing $\delta-$ KKT points of a n-varialbe Quadratic Program, in time:

$$
O\left(\left[\frac{n^{6}}{\delta} \log \left(\frac{1}{\delta}\right)+n^{4} \log (n)\right] \cdot\left[\log \log \left(\frac{1}{\delta}\right)+\log (n)\right]\right)
$$

- Question: What is the quality as a Nash approximation of a δ-KKT point?

A Fundamental Property of (KKTSMS) - (I)

LEMMA: [Kontogiannis-Spirakis (SEA 2011)]
For any $m, n \geq 2, S \in[0,1]^{m \times n}$, and any point $(\max (S \overline{\mathbf{z}}), \overline{\mathbf{z}}, \overline{\mathbf{w}}, \overline{\mathbf{u}}, \bar{\zeta}) \in(K K T S M S)$ the following properties hold:
© $\bar{\zeta}=f(\overline{\mathbf{z}})-\overline{\mathbf{z}}^{T} S \overline{\mathbf{z}}$.
2. $2 f(\overline{\mathbf{z}})=\overline{\mathbf{w}}^{T} S \overline{\mathbf{w}}-\overline{\mathbf{z}}^{T} S \overline{\mathbf{w}}-\overline{\mathbf{w}}^{T} \overline{\mathbf{u}}$.

3 $2 f(\overline{\mathbf{z}})+f(\overline{\mathbf{w}})=R_{l}(\overline{\mathbf{z}}, \overline{\mathbf{w}})-\overline{\mathbf{w}}^{T} \overline{\mathbf{u}}$.

A Fundamental Property of (KKTSMS) - (I)

LEMMA: [Kontogiannis-Spirakis (SEA 2011)]
For any $m, n \geq 2, S \in[0,1]^{m \times n}$, and any point $(\max (S \overline{\mathbf{z}}), \overline{\mathbf{z}}, \overline{\mathbf{w}}, \overline{\mathbf{u}}, \bar{\zeta}) \in(K K T S M S)$ the following properties hold:
ง. $\bar{\zeta}=f(\overline{\mathbf{z}})-\overline{\mathbf{z}}^{T} S \overline{\mathbf{z}}$.
2. $2 f(\overline{\mathbf{z}})=\overline{\mathbf{w}}^{T} S \overline{\mathbf{w}}-\overline{\mathbf{z}}^{T} S \overline{\mathbf{w}}-\overline{\mathbf{w}}^{T} \overline{\mathbf{u}}$.

3 $2 f(\overline{\mathbf{z}})+f(\overline{\mathbf{w}})=R_{/}(\overline{\mathbf{z}}, \overline{\mathbf{w}})-\overline{\mathbf{w}}^{T} \overline{\mathbf{u}}$.

Some Remarks:

- $f(\overline{\mathbf{z}})=\max (S \overline{\mathbf{z}})-\overline{\mathbf{z}}^{T} S \overline{\mathbf{z}}$ is either player's regret, for the symmetric profile ($\overline{\mathbf{z}}, \overline{\mathbf{z}}$).
- $R_{l}(\overline{\mathbf{z}}, \overline{\mathbf{w}})=\max (S \overline{\mathbf{w}})-\overline{\mathbf{z}}^{T} S \overline{\mathbf{w}} \leq 1$ is (only) the row player's regret, for the asymmetric profile ($\overline{\mathbf{w}}, \overline{\mathbf{z}}$).
- The third property assures that any (exact) KKT point (is not necessarily itself, but) indicates a $1 / 3-\mathrm{NE}$ of $\left\langle S, S^{T}\right\rangle$, in normalized games.

A Fundamental Property of (KKTSMS) - (II)

Proof of the Lemma

$$
\begin{aligned}
&-S \overline{\mathbf{z}}-S^{T} \overline{\mathbf{z}}=-S^{T} \overline{\mathbf{w}}+\overline{\mathbf{u}}+\mathbf{1} \bar{\zeta} \\
& \Rightarrow\left\{\begin{array}{l}
-\overline{\mathbf{z}}^{T} S \overline{\mathbf{z}}-\overline{\mathbf{z}}^{T} S^{T} \overline{\mathbf{z}}=-\overline{\mathbf{z}}^{T} S^{T} \overline{\mathbf{w}}+\underbrace{\overline{\mathbf{z}}^{T} \overline{\mathbf{u}}}_{=0}+\underbrace{\bar{z}^{T} \mathbf{1}}_{=1} \bar{\zeta} \\
-\overline{\mathbf{w}}^{T} S \overline{\mathbf{z}}-\overline{\mathbf{w}}^{T} S^{T} \overline{\mathbf{z}}=-\overline{\mathbf{w}}^{T} S^{T} \overline{\mathbf{w}}+\overline{\mathbf{w}}^{T} \overline{\mathbf{u}}+\underbrace{\overline{\mathbf{w}}^{T} \mathbf{1}}_{=1} \bar{\zeta} \\
\Rightarrow \\
\Rightarrow
\end{array}\right. \\
& \Rightarrow\left\{\begin{array}{l}
\bar{\zeta}=-2 \overline{\mathbf{z}}^{T} S \overline{\mathbf{z}}+\overline{\mathbf{z}}^{T} S^{T} \overline{\mathbf{w}}=f(\overline{\mathbf{z}})-\overline{\mathbf{z}}^{T} S \overline{\mathbf{z}} \\
\bar{\zeta}=-\overline{\mathbf{w}}^{T} S \overline{\mathbf{z}}-\overline{\mathbf{z}}^{T} S \overline{\mathbf{w}}+\overline{\mathbf{w}}^{T} S \overline{\mathbf{w}}-\overline{\mathbf{w}}^{T} \overline{\mathbf{u}} \\
\bar{\zeta}=f(\overline{\mathbf{z}})-\overline{\mathbf{z}}^{T} S \overline{\mathbf{z}} \\
2 f(\overline{\mathbf{z}})=-2 \overline{\mathbf{z}}^{T} S \overline{\mathbf{z}}+2 \overline{\mathbf{w}}^{T} S \overline{\mathbf{z}}=-\overline{\mathbf{z}}^{T} S \overline{\mathbf{w}}+\overline{\mathbf{w}}^{T} S \overline{\mathbf{w}}-\overline{\mathbf{w}}^{T} \overline{\mathbf{u}}
\end{array}\right.
\end{aligned}
$$

A Fundamental Property of (KKTSMS) - (II)

 Proof of the Lemma$$
\begin{aligned}
&-S \overline{\mathbf{z}}-S^{T} \overline{\mathbf{z}}=-S^{T} \overline{\mathbf{w}}+\overline{\mathbf{u}}+\mathbf{1} \bar{\zeta} \\
& \Rightarrow\left\{\begin{array}{l}
-\overline{\mathbf{z}}^{T} S \overline{\mathbf{z}}-\overline{\mathbf{z}}^{T} S^{T} \overline{\mathbf{z}}=-\overline{\mathbf{z}}^{T} S^{T} \overline{\mathbf{w}}+\underbrace{\bar{z}^{T} \overline{\mathbf{u}}}_{=0}+\underbrace{\overline{\mathbf{z}}^{T} \mathbf{1}}_{=1} \bar{\zeta} \\
-\overline{\mathbf{w}}^{T} S \overline{\mathbf{z}}-\overline{\mathbf{w}}^{T} S^{T} \overline{\mathbf{z}}=-\overline{\mathbf{w}}^{T} S^{T} \overline{\mathbf{w}}+\overline{\mathbf{w}}^{T} \overline{\mathbf{u}}+\underbrace{\mathbf{w}^{T} \mathbf{1}}_{=1} \bar{\zeta} \\
\Rightarrow \\
\Rightarrow
\end{array}\right. \\
& \Rightarrow\left\{\begin{array}{l}
\bar{\zeta}=-2 \overline{\mathbf{z}}^{T} S \overline{\mathbf{z}}+\overline{\mathbf{z}}^{T} S^{T} \overline{\mathbf{w}}=f(\overline{\mathbf{z}})-\overline{\mathbf{z}}^{T} S \overline{\mathbf{z}} \\
\bar{\zeta}=-\overline{\mathbf{w}}^{T} S \overline{\mathbf{z}}-\overline{\mathbf{z}}^{T} S \overline{\mathbf{w}}+\overline{\mathbf{w}}^{T} S \overline{\mathbf{w}}-\overline{\mathbf{w}}^{T} \overline{\mathbf{u}} \\
\bar{\zeta}=f(\overline{\mathbf{z}})-\overline{\mathbf{z}}^{T} S \overline{\mathbf{z}} \\
2 f(\overline{\mathbf{z}})=-2 \overline{\mathbf{z}}^{T} S \overline{\mathbf{z}}+2 \overline{\mathbf{w}}^{T} S \overline{\mathbf{z}}=-\overline{\mathbf{z}}^{T} S \overline{\mathbf{w}}+\overline{\mathbf{w}}^{T} S \overline{\mathbf{w}}-\overline{\mathbf{w}}^{T} \overline{\mathbf{u}}
\end{array}\right.
\end{aligned}
$$

- We add $f(\overline{\mathbf{w}})=\max (S \overline{\mathbf{w}})-\overline{\mathbf{w}}^{T} S \overline{\mathbf{w}}$ to both sides of the equation:

$$
\begin{aligned}
& 2 f(\overline{\mathbf{z}})+f(\overline{\mathbf{w}})=\max (S \overline{\mathbf{w}})-\overline{\mathbf{w}}^{T} S \overline{\mathbf{w}}-\overline{\mathbf{z}}^{T} S \overline{\mathbf{w}}+\overline{\mathbf{w}}^{T} S \overline{\mathbf{w}}-\overline{\mathbf{w}}^{T} \overline{\mathbf{u}} \\
\Rightarrow & 3 \cdot \min \{f(\overline{\mathbf{z}}), f(\overline{\mathbf{w}})\} \leq 2 f(\overline{\mathbf{z}})+f(\overline{\mathbf{w}})=R_{l}(\overline{\mathbf{z}}, \overline{\mathbf{w}})-\overline{\mathbf{w}}^{T} \overline{\mathbf{u}} \leq 1
\end{aligned}
$$

$(<1 / 3)-$ NE from a Given Exact KKT Point - (I) THEOREM: [Kontogiannis-Spirakis (2011)]
Starting from any (exact) KKT point of (KKTSMS) for a normalized symmetric bimatrix game $\left\langle S, S^{T}\right\rangle$, computing a $\left(<\frac{1}{3}\right)$-NE can be done in polynomial time.
(<1/3)-NE from a Given Exact KKT Point - (I) THEOREM: [Kontogiannis-Spirakis (2011)]
Starting from any (exact) KKT point of (KKTSMS) for a normalized symmetric bimatrix game $\left\langle S, S^{T}\right\rangle$, computing a $\left(<\frac{1}{3}\right)-$ NE can be done in polynomial time.

Proof Sketch:

- $(\max (S \bar{z}), \bar{z}, \overline{\mathbf{w}}, \bar{u}, \bar{\zeta})$: The given KKT point, along with the proper Lagrange multipliers.
- if $f(\overline{\mathbf{z}}) \neq f(\overline{\mathbf{w}})$ then $3 \cdot \min \{f(\overline{\mathbf{z}}), f(\overline{\mathbf{w}})\}<R_{l}(\overline{\mathbf{z}}, \overline{\mathbf{w}})-\overline{\mathbf{w}}^{T} \overline{\mathbf{u}} \leq 1$.
\therefore ASSUMPTION $1: f(\overline{\mathbf{z}})=f(\overline{\mathbf{w}})=\frac{1}{3}$.
$(<1 / 3)-$ NE from a Given Exact KKT Point - (I) THEOREM: [Kontogiannis-Spirakis (2011)]
Starting from any (exact) KKT point of (KKTSMS) for a normalized symmetric bimatrix game $\left\langle S, S^{T}\right\rangle$, computing a $\left(<\frac{1}{3}\right)$-NE can be done in polynomial time.

Proof Sketch:

- ($\max (S \overline{\mathbf{z}}), \overline{\mathbf{z}}, \overline{\mathbf{w}}, \overline{\mathbf{u}}, \bar{\zeta})$: The given KKT point, along with the proper Lagrange multipliers.
- if $f(\overline{\mathbf{z}}) \neq f(\overline{\mathbf{w}})$ then $3 \cdot \min \{f(\overline{\mathbf{z}}), f(\overline{\mathbf{w}})\}<R_{l}(\overline{\mathbf{z}}, \overline{\mathbf{w}})-\overline{\mathbf{w}}^{T} \overline{\mathbf{u}} \leq 1$. \therefore ASSUMPTION $1: f(\overline{\mathbf{z}})=f(\overline{\mathbf{w}})=\frac{1}{3}$.
- if $(\max (S \overline{\mathbf{w}}), \overline{\mathbf{w}}) \notin(\mathrm{KKTSMS})$
then starting from $(\max (S \overline{\mathbf{w}}), \overline{\mathbf{w}})$, the next step towards a KKT point will give a (<1/3)-NE.
\therefore ASSUMPTION 2: $(\max (S \bar{w}), \overline{\mathbf{w}}) \in(K K T S M S)$.

$(<1 / 3)-$ NE from a Given Exact KKT Point - (II)

- ($\left.\overline{\mathbf{w}}^{\prime}, \overline{\mathbf{u}}^{\prime}, \bar{\zeta}^{\prime}\right)$: The appropriate Lagrange multipliers for $(\max (S \bar{w}), \overline{\mathbf{w}}) \in(K K T S M S)$.
- From the Basic Lemma, applied now to $(\max (S \overline{\mathbf{w}}), \overline{\mathbf{w}})$:

$$
2 f(\overline{\mathbf{w}})+f\left(\overline{\mathbf{w}}^{\prime}\right)=R_{/}\left(\overline{\mathbf{w}}, \overline{\mathbf{w}}^{\prime}\right)-\left(\overline{\mathbf{w}}^{\prime}\right)^{T} \overline{\mathbf{u}}^{\prime}
$$

$(<1 / 3)-$ NE from a Given Exact KKT Point - (II)

- ($\left.\overline{\mathbf{w}}^{\prime}, \overline{\mathbf{u}}^{\prime}, \bar{\zeta}^{\prime}\right)$: The appropriate Lagrange multipliers for $(\max (S \bar{w}), \overline{\mathbf{w}}) \in(K K T S M S)$.
- From the Basic Lemma, applied now to $(\max (S \overline{\mathbf{w}}), \overline{\mathbf{w}})$:

$$
2 f(\overline{\mathbf{w}})+f\left(\overline{\mathbf{w}}^{\prime}\right)=R_{l}\left(\overline{\mathbf{w}}, \overline{\mathbf{w}}^{\prime}\right)-\left(\overline{\mathbf{w}}^{\prime}\right)^{T} \overline{\mathbf{u}}^{\prime}
$$

- Observation 1 :

$$
\begin{array}{ll}
& 1=3 f(\overline{\mathbf{z}})=R_{l}(\overline{\mathbf{z}}, \overline{\mathbf{w}})-\overline{\mathbf{w}}^{T} \overline{\mathbf{u}} \\
\Rightarrow \quad & \max (S \overline{\mathbf{w}})=1 \wedge \overline{\mathbf{z}}^{T} S \overline{\mathbf{w}}=0 \wedge \overline{\mathbf{w}}^{T} \overline{\mathbf{u}}=0 \\
& 1=3 f(\overline{\mathbf{w}})=R_{l}\left(\overline{\mathbf{w}}, \overline{\mathbf{w}}^{\prime}\right)-\left(\overline{\mathbf{w}}^{\prime}\right)^{T} \overline{\mathbf{u}}^{\prime} \\
\Rightarrow \quad & \max \left(S \overline{\mathbf{w}}^{\prime}\right)=1 \wedge \overline{\mathbf{w}}^{T} S \overline{\mathbf{w}}^{\prime}=0 \wedge\left(\overline{\mathbf{w}}^{\prime}\right)^{T} \overline{\mathbf{u}}^{\prime}=0
\end{array}
$$

$(<1 / 3)-$ NE from a Given Exact KKT Point - (II)

- ($\left.\bar{w}^{\prime}, \bar{u}^{\prime}, \bar{\zeta}^{\prime}\right)$: The appropriate Lagrange multipliers for $(\max (S \bar{w}), \bar{w}) \in(K K T S M S)$.
- From the Basic Lemma, applied now to $(\max (S \overline{\mathbf{w}}), \overline{\mathbf{w}})$:

$$
2 f(\overline{\mathbf{w}})+f\left(\overline{\mathbf{w}}^{\prime}\right)=R_{l}\left(\overline{\mathbf{w}}, \overline{\mathbf{w}}^{\prime}\right)-\left(\overline{\mathbf{w}}^{\prime}\right)^{T} \overline{\mathbf{u}}^{\prime}
$$

- Observation 1 :

$$
\begin{aligned}
& 1=3 f(\overline{\mathbf{z}})=R_{l}(\overline{\mathbf{z}}, \overline{\mathbf{w}})-\overline{\mathbf{w}}^{T} \overline{\mathbf{u}} \\
\Rightarrow \quad & \max (S \overline{\mathbf{w}})=1 \wedge \overline{\mathbf{z}}^{T} S \overline{\mathbf{w}}=0 \wedge \overline{\mathbf{w}}^{T} \overline{\mathbf{u}}=0 \\
& 1=3 f(\overline{\mathbf{w}})=R_{l}\left(\overline{\mathbf{w}}, \overline{\mathbf{w}}^{\prime}\right)-\left(\overline{\mathbf{w}}^{\prime}\right)^{T} \overline{\mathbf{u}}^{\prime} \\
\Rightarrow \quad & \max \left(S \overline{\mathbf{w}}^{\prime}\right)=1 \wedge \overline{\mathbf{w}}^{T} S \overline{\mathbf{w}}^{\prime}=0 \wedge\left(\overline{\mathbf{w}}^{\prime}\right)^{T} \overline{\mathbf{u}}^{\prime}=0
\end{aligned}
$$

- Observation 2: $\frac{1}{3}=f(\overline{\mathbf{w}})=\max (S \overline{\mathbf{w}})-\overline{\mathbf{w}}^{T} S \overline{\mathbf{w}} \Rightarrow \overline{\mathbf{w}}^{T} S \overline{\mathbf{w}}=\frac{2}{3}$
(<1/3)-NE from a Given Exact KKT Point - (III)
- if $f(\overline{\mathbf{w}}) \neq f\left(\overline{\mathbf{w}}^{\prime}\right)$ then $3 \min \left\{f(\overline{\mathbf{w}}), f\left(\overline{\mathbf{w}}^{\prime}\right)\right\}<1$.
\therefore ASSUMPTION 3: $f(\overline{\mathbf{z}})=f(\overline{\mathbf{w}})=f\left(\overline{\mathbf{w}}^{\prime}\right)=\frac{1}{3}$.
(<1/3)-NE from a Given Exact KKT Point - (III)
- if $f(\overline{\mathbf{w}}) \neq f\left(\overline{\mathbf{w}}^{\prime}\right)$ then $3 \min \left\{f(\overline{\mathbf{w}}), f\left(\overline{\mathbf{w}}^{\prime}\right)\right\}<1$.
\therefore ASSUMPTION 3: $f(\overline{\mathbf{z}})=f(\overline{\mathbf{w}})=f\left(\overline{\mathbf{w}}^{\prime}\right)=\frac{1}{3}$.
- $(\max (S \overline{\mathbf{z}}), \overline{\mathbf{z}}) \in(\mathrm{KKTSMS}):$

$$
\left.\begin{array}{c}
-S \overline{\mathbf{z}}-S^{T} \overline{\mathbf{z}}+S^{T} \overline{\mathbf{w}}=\overline{\mathbf{u}}+\mathbf{1} \bar{\zeta} \\
\bar{\zeta}=f(\overline{\mathbf{z}})-\overline{\mathbf{z}}^{T} S \overline{\mathbf{z}}
\end{array}\right\} \quad \Rightarrow
$$

$(<1 / 3)-N E$ from a Given Exact KKT Point - (IV)

- $(\max (S \overline{\mathbf{w}}), \overline{\mathbf{w}}) \in(\mathrm{KKTSMS}):$

$$
\left.\begin{array}{rc}
-S \overline{\mathbf{w}}-S^{T} \overline{\mathbf{w}}+S^{T} \overline{\mathbf{w}}^{\prime}=\overline{\mathbf{w}}^{\prime}+\mathbf{1} \bar{\zeta}^{\prime} \\
\bar{\zeta}^{\prime}=f(\overline{\mathbf{w}})-\overline{\mathbf{w}}^{T} S \overline{\mathbf{w}}=-\frac{1}{3}
\end{array}\right\} \quad \Rightarrow
$$

$(<1 / 3)-N E$ from a Given Exact KKT Point - (IV)

- $(\max (S \bar{w}), \overline{\mathbf{w}}) \in(K K T S M S):$

$$
\begin{aligned}
& -S \overline{\mathbf{w}}-S^{T} \overline{\mathbf{w}}+S^{T} \overline{\mathbf{w}}^{\prime}=\overline{\mathbf{w}}^{\prime}+\bar{\zeta}^{\prime} \\
& \left.\bar{\zeta}^{\prime}=f(\overline{\mathbf{w}})-\overline{\mathbf{w}}^{T} S \overline{\mathbf{w}}=-\frac{1}{3}\right\} \\
& -\underbrace{\overline{\mathbf{z}}^{T} S \overline{\mathbf{w}}}_{0}-\underbrace{\bar{z}^{T} S^{T} \overline{\mathbf{w}}}_{=\max (S \bar{z})}+\overline{\mathbf{z}}^{T} S^{T} \overline{\mathbf{w}}^{\prime}=\overline{\mathbf{z}}^{T} \overline{\mathbf{u}}^{\prime}-\frac{1}{3} \Rightarrow \\
& 0 \leq \overline{\mathbf{z}}^{T} \overline{\mathbf{u}}^{\prime}=\frac{1}{3}-\max (S \overline{\mathbf{z}})+\left(\overline{\mathbf{w}}^{\prime}\right)^{T} S \overline{\mathbf{z}} \quad \Rightarrow \\
& \underbrace{\max (S \overline{\mathbf{z}})-\overline{\mathbf{z}}^{T} S \overline{\mathbf{z}}} \leq \frac{1}{3}+\left(\overline{\mathbf{w}}^{\prime}\right)^{T} S \overline{\mathbf{z}}-\overline{\mathbf{z}}^{T} S \overline{\mathbf{z}} \quad \Rightarrow \\
& -f(\bar{z})=\frac{1}{3} \\
& \left(\bar{w}^{\prime}\right)^{T} S \bar{z}-\bar{z}^{T} S \bar{z} \geq 0
\end{aligned}
$$

\therefore if $f(\overline{\mathbf{z}})=f(\overline{\mathbf{w}})=f\left(\bar{w}^{\prime}\right)=\frac{1}{3} \wedge(\max (S \bar{z}), \overline{\mathbf{z}}),(\max (S \overline{\mathbf{w}}), \overline{\mathbf{w}}) \in$ (KKTSMS)
then

$$
0 \leq\left(\bar{w}^{\prime}\right)^{T} S \overline{\mathbf{z}}-\overline{\mathbf{z}}^{T} S \overline{\mathbf{z}} \leq-\frac{1}{3}
$$

Efficient Computation of $\left(\frac{1}{3}+\delta\right)-\mathrm{NE}$

THEOREM: [Kontogiannis-Spirakis (2011)]

For any normalized symmetric bimatrix game $\left\langle S, S^{T}\right\rangle$ with rational payoff values, $S \in[0,1]^{n \times n}$, and any constant $\delta>0$, it is possible to construct a symmetric $(1 / 3+\delta)-$ NE point, in time polynomial in the description of the game and quasi-linear in the value of δ.

Efficient Computation of $\left(\frac{1}{3}+\delta\right)-\mathrm{NE}$

THEOREM: [Kontogiannis-Spirakis (2011)]

For any normalized symmetric bimatrix game $\left\langle S, S^{T}\right\rangle$ with rational payoff values, $S \in[0,1]^{n \times n}$, and any constant $\delta>0$, it is possible to construct a symmetric $(1 / 3+\delta)-$ NE point, in time polynomial in the description of the game and quasi-linear in the value of δ.

- Similar proof with that for the NE approximability of exact KKT points, only working now with δ-approximate (rather than exact) KKT points of (SMS).

Experimental Study of
 SYMMETRIC-2NASH
 Approximations

Experimental Evaluation of 2NASH Approximations

- Goal: Try various heuristics for providing approximate NE points in symmetric bimatrix games.
- Random Game Generator: Win-Lose symmetric games $\left\langle R, R^{T}\right\rangle$, provided by rounding a normalized-random game $\left\langle S, S^{\top}\right\rangle$ whose entries are normal r.v.s with mean 0 and deviation 1. A fine-tuning parameter allows for favoring either sparse or dense win-lose games.
- OPTION: Clear the random win-lose game by avoiding...
> "all-ones" rows in R, (weakly dominates all actions of row player).
> "all-zeros" rows in R, (weakly dominated row which cannot disturb an approximate NE point).
- (1,1)-elements in the bimatrix $\left\langle R, R^{T}\right\rangle$ (trivial pure NE points).

1st Basic Approach
KKT Points of (SMS) as $\varepsilon-N E$ Points

- Method: Use any polynomial-time construction algorithm to converge to a KKT point of SMS.
- Our approach: KKTSMS Use the quadprog (active-set) method of MatLab to locate a KKT point of (SMS).

2nd Basic Approach

Reformulation-Linearization Relaxation of (SMS)

- Method: Create a (1st-level) LP relaxation of SMS, based on the RLT method of [Sherali-Adams (1998)] .
- Our approach: RLTSMS Solve the following relaxation:

$$
\begin{aligned}
& \text { minimize } \quad \alpha-\sum_{i \in[n]} \sum_{j \in[n]} R_{i j} W_{i, j} \\
& \text { set. } \beta-\sum_{j}\left(R_{i, j}+R_{k, j}\right) \gamma_{j}+\sum_{j} \sum_{\ell} R_{i, j} R_{k, \ell} W_{j, \ell} \geq 0, \quad i, k \in[n] \\
& \alpha-\sum_{j} R_{i j} x_{j}-\gamma_{k}+\sum_{j} R_{i, j} W_{j, k} \geq 0, \quad i, k \in[n] \\
& -x_{i}-x_{j}+W_{i, j} \geq-1, \quad i, j \in[n] \\
& \gamma_{k}-\sum_{j} R_{i, j} \gamma_{j} \geq 0, \quad i, k \in[n] \\
& x_{i}-\sum_{j} W_{i j}=0, \quad i \in[n] \\
& \sum_{j} x_{j}=1 \text {, } \\
& -x_{i}-\alpha+\gamma_{i} \geq-1, \quad i \in[n] \\
& x_{i}-\gamma_{i} \geq 0, \quad i \in[n] \\
& \beta-\sum_{j} R_{i j} \gamma_{j} \geq 0, \quad i \in[n] \\
& \sum_{i} \gamma_{i}-\alpha=0, \\
& \alpha-\beta \geq 0, \\
& \beta \geq 0 ; \quad \gamma_{i} \geq 0, i \in[n] ; \quad W_{i j} \geq 0, i, j \in[n]
\end{aligned}
$$

3rd Basic Approach

Doubly Positive SDP Relaxation of (SMS)

- Method: Create an SDP-relaxation of (SMS), considering also the non-negativity of the produced matrix.
- Our approach: DPSDP Solve the following relaxation:

$$
\begin{aligned}
\alpha-\sum_{i} & \sum_{j} R_{i, j} W_{i, j} \\
\text { minimize } & \\
\text { s.t } \quad \alpha-\sum_{j} R_{i, j} x_{j} & \geq 0, \\
\sum_{j} x_{j} & =1, \\
W_{i, j}-W_{j, i} & =0,
\end{aligned} \quad i \in[n]
$$

4th Basic Approach

Marginals of Extreme CE points of (SMS)

- Method: Return the marginals of extreme points in the CE-polytope of $\left\langle R, R^{T}\right\rangle$.
- Our approach:BMXCEV4 Solve the following relaxation and return the profile with the marginals of the optimum correlated strategy $\mathbf{W} \in \Delta([n]) \times \Delta([n]):$

$$
\begin{array}{|crl}
\hline \text { min. } & \sum_{i} \sum_{j}\left[R_{i, j} \cdot R_{j, i}\right] W_{i, j} \\
\text { s.t. } & \forall i, k \in[m], \quad \sum_{j \in[n]}\left(R_{i, j}-R_{k, j}\right) W_{i, j} & \geq 0 \\
& \sum_{i \in[m]} \sum_{j \in[n]} W_{i, j} & =1 \\
W_{i, j} & \geq 0 \\
& \forall(i, j) \in[m] \times[n], &
\end{array}
$$

Hybrid Approaches

- Method: Consider only best-of results for various (couples, or triples of) methods.

Experimental Results for Pure Methods (I)

	RLTSMS	KKTSMS	DPSDP	BMXCEV4
Worst-case ε	0.512432	0.22222	0.6	0.49836
\#unsolved games	112999	110070	0	405
Worst-case round	10950	15484	16690	12139

- Experimental results for worst-case approximation among 500K random 10x10 symmetric win-lose games.

Experimental Results for Pure Methods (II)

	RLTSMS	KKTSMS	DPSDP	BMXCEV4
Worst-case ε	0.41835	0.08333	0.51313	0.21203
\#unsolved games	11183	32195	0	1553
Worst-case round	45062	42043	55555	17923

- Experimental results for worst-case approximation among 500 K random 10x10 symmetric win-lose games, which avoid $(1,1)$-elements, $(1, *)$ - and $(0, *)$-rows.

Experimental Results for Hybrid Methods (I)

	KKTSMS + BMXCEV4	KKTSMS + RLT + BMXCEV4	KKTSMS + RLT + DPSDP
Worst-case ε	0.45881	0.47881	0.54999
\#unsolved games	0	0	0
Worst-case round	652	1776	737

- Experimental results for worst-case approximation among 500 K random 10×10 symmetric win-lose games.

Experimental Results for Hybrid Methods (II)

	KKTSMS + BMXCEV4	KKTSMS + RLT + BMXCEV4	KKTSMS + + RLT + DPSDP
Worst-case ε	0.08576	0.08576	0.28847
\#unsolved games	0	0	0
Worst-case round	157185	397418	186519

- Experimental results for worst-case approximation among 500 K random 10×10 symmetric win-lose games, which avoid $(1,1)$-elements, $(1, *)$ - and ($0, *$)-rows.

Distribution of Solved Games (I)

(a) RLTSMS

- Distribution of games solved for particular values of approximation, in runs of 10 K random 10×10 symmetric win-lose games. The games that remain unsolved in each case accumulate at the epsilon value 1 .

Distribution of Solved Games (II)

(b) KKTSMS

- Distribution of games solved for particular values of approximation, in runs of 10 K random 10×10 symmetric win-lose games. The games that remain unsolved in each case accumulate at the epsilon value 1 .

Distribution of Solved Games (III)

(c) DPSDP

- Distribution of games solved for particular values of approximation, in runs of 10 K random 10×10 symmetric win-lose games. The games that remain unsolved in each case accumulate at the epsilon value 1 .

Distribution of Solved Games (IV)

(d) BMXCEV4

- Distribution of games solved for particular values of approximation, in runs of 10 K random 10×10 symmetric win-lose games. The games that remain unsolved in each case accumulate at the epsilon value 1 .

Skeleton of the Talk

(1) Bimatrx Games Preliminaries

- Complexity of 2NASH
- Formulations for 2NASH
- The algorithm of Lemke \& Howson
(2) Polynomial-time Tractable Subclasses
(3) Approximability of 2 NASH
- Theoretical Analysis
- Experimental Study

4 Conclusions

Recap \& Open Problems

- [Papadimitriou (2001)] kNASH is, together with FACTORING, probably the most important problems at the intersection of \mathcal{P} and $\mathcal{N} \mathcal{P}$.
- Even 2NASH seems already too hard to solve.
- Is there a PTAS, or a lower bound that, unless something extremely unlikely holds (eg, $\mathcal{P}=\mathcal{N} \mathcal{P}$), excludes the existence of a better approximation ratio for ε-NE points?
- Extensive experimentation on randomly constructed win-lose games shows that probably $1 / 3$ is not the end of the story...
- How about ε-WSNE points?
- Are there any other, more general subclasses of bimatrix game for which 2NASH is polynomial-time tractable, or at least a PTAS exists?

Thanks for your attention!

Questions / Remarks ?

